Patents by Inventor Gilberto Curatola

Gilberto Curatola has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150333166
    Abstract: A semiconductor device includes a first compound semiconductor material including a first doping concentration and a second compound semiconductor material on the first compound semiconductor material, the second compound semiconductor material including a different material than the first compound semiconductor material. The semiconductor device further includes a control electrode and at least one buried semiconductor material region including a second doping concentration different from the first doping concentration. The at least one buried semiconductor material region is disposed in the first compound semiconductor material in a region other than a region of the first compound semiconductor material being covered by the control electrode.
    Type: Application
    Filed: July 29, 2015
    Publication date: November 19, 2015
    Inventor: Gilberto Curatola
  • Patent number: 9147740
    Abstract: A transistor device includes a heterostructure body having a source, a drain spaced apart from the source and a two-dimensional charge carrier gas channel between the source and the drain. The transistor device further includes a piezoelectric gate on the heterostructure body. The piezoelectric gate is operable to control the channel below the piezoelectric gate by increasing or decreasing a force applied to the heterostructure body responsive to a voltage applied to the piezoelectric gate.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: September 29, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Siemieniec, Gilberto Curatola
  • Publication number: 20150255573
    Abstract: A method of manufacturing a semiconductor device includes providing a heterostructure body with a first doped region, a second doped region spaced apart from the first doped region and a two-dimensional charge carrier gas channel between the first and second doped regions, and forming a gate structure on the heterostructure body for controlling the channel, the gate structure comprising a piezoelectric material and an electrical conductor in contact with the piezoelectric material.
    Type: Application
    Filed: May 13, 2015
    Publication date: September 10, 2015
    Inventors: Ralf Siemieniec, Gilberto Curatola
  • Patent number: 9123791
    Abstract: A semiconductor device includes a first compound semiconductor material including a first doping concentration and a second compound semiconductor material on the first compound semiconductor material, the second compound semiconductor material including a different material than the first compound semiconductor material. The semiconductor device further includes a control electrode and at least one buried semiconductor material region including a second doping concentration different from the first doping concentration. The at least one buried semiconductor material region is disposed in the first compound semiconductor material in a region other than a region of the first compound semiconductor material being covered by the control electrode.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: September 1, 2015
    Assignee: Infineon Technologies Austria AG
    Inventor: Gilberto Curatola
  • Publication number: 20150214311
    Abstract: A method of manufacturing a semiconductor device includes forming a first compound semiconductor material on a semiconductor substrate and forming a second compound semiconductor material on the first compound semiconductor material. The second compound semiconductor material includes a different material than the first compound semiconductor material such that the first compound semiconductor material has a two-dimensional electron gas (2DEG). The method further includes forming a buried field plate in the first compound semiconductor material so that the 2DEG is interposed between the buried field plate and the second compound semiconductor material, and electrically connecting the buried field plate to a terminal of the semiconductor device.
    Type: Application
    Filed: April 6, 2015
    Publication date: July 30, 2015
    Inventors: Gilberto Curatola, Oliver Haeberlen
  • Publication number: 20150194513
    Abstract: A semiconductor device includes a first compound semiconductor material including a first doping concentration and a second compound semiconductor material on the first compound semiconductor material, the second compound semiconductor material including a different material than the first compound semiconductor material. The semiconductor device further includes a control electrode and at least one buried semiconductor material region including a second doping concentration different from the first doping concentration. The at least one buried semiconductor material region is disposed in the first compound semiconductor material in a region other than a region of the first compound semiconductor material being covered by the control electrode.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 9, 2015
    Inventor: Gilberto Curatola
  • Publication number: 20150179643
    Abstract: One aspect relates to a semiconductor component with a semiconductor body, a first main contact pad, a second main contact pad, a normally-on first transistor monolithically integrated in the semiconductor body and a normally-off second transistor monolithically integrated in the semiconductor body. The first transistor is a high electron mobility transistor having a first gate electrode and a first load path controllable via a first gate electrode, and the second transistor has a second gate electrode and a second load path controllable via the second gate electrode. The first load path and the second load path are electrically connected in series between the first main contact pad and the second main contact pad.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 25, 2015
    Inventors: Gilberto Curatola, Oliver Haeberlen, Walter Rieger, Anthony Sanders
  • Patent number: 9034637
    Abstract: A detector device comprises a substrate (50), a source region (S) and a drain region (D), and a channel region (65) between the source and drain regions. A nanopore (54) passes through the channel region, and connects fluid chambers (56,58) on opposite sides of the substrate. A voltage bias is provided between the fluid chambers, the source and drain regions and a charge flow between the source and drain regions is sensed. The device uses a nanopore for the confinement of a sample under test (for example nucleotides) close to a sensor. The size of the sensor can be made similar to the spacing of adjacent nucleotides in a DNA strand. In this way, the disadvantages of PCR based techniques for DNA sequencing are avoided, and single nucleotide resolution can be attained.
    Type: Grant
    Filed: April 5, 2008
    Date of Patent: May 19, 2015
    Assignee: NXP, B.V.
    Inventors: Matthias Merz, Youri V. Ponomarev, Gilberto Curatola
  • Patent number: 9024356
    Abstract: A semiconductor device includes a first compound semiconductor material and a second compound semiconductor material on the first compound semiconductor material. The second compound semiconductor material comprises a different material than the first compound semiconductor material such that the first compound semiconductor material has a two-dimensional electron gas (2DEG). The semiconductor device further includes a buried field plate disposed in the first compound semiconductor material and electrically connected to a terminal of the semiconductor device. The 2DEG is interposed between the buried field plate and the second compound semiconductor material.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 5, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Gilberto Curatola, Oliver Häberlen
  • Patent number: 8963219
    Abstract: A tunnel field effect transistor and a method of making the same. The transistor includes a semiconductor substrate. The transistor also includes a gate located on a major surface of the substrate. The transistor further includes a drain of a first conductivity type. The transistor also includes a source of a second conductivity type extending beneath the gate. The source is separated from the gate by a channel region and a gate dielectric. The transistor is operable to allow charge carrier tunnelling from an inversion layer through an upper surface of the source.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: February 24, 2015
    Assignee: NXP B.V.
    Inventors: Gilberto Curatola, Dusan Golubovic, Johannes Josephus Theodorus Marinus Donkers, Guillaume Boccardi, Hans Mertens
  • Patent number: 8952421
    Abstract: A compound semiconductor device includes a plurality of high-resistance crystalline silicon epitaxial layers and a plurality of activated dopant regions disposed in a same region of at least some of the epitaxial layers so that the activated dopant regions are aligned in a vertical direction perpendicular to a main surface of the epitaxial layers. The compound semiconductor device further includes an III-nitride compound semiconductor device structure disposed on the main surface of the epitaxial layers. The III-nitride compound semiconductor device structure has a source, a drain and a gate. An electrically conductive structure is formed from the activated dopant regions. The electrically conductive structure extends in the vertical direction through the epitaxial layers with the activated dopant regions toward the III-nitride compound semiconductor device structure, and is electrically connected to the source.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: February 10, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Gilberto Curatola, Gianmauro Pozzovivo, Simone Lavanga
  • Publication number: 20140374765
    Abstract: A normally-off compound semiconductor transistor includes a heterostructure body and a gate stack on the heterostructure body. The heterostructure body includes a source, a drain spaced apart from the source, and a channel for connecting the source and the drain. The channel includes a first two-dimensional charge carrier gas of a first polarity arising in the heterostructure body due to piezoelectric effects. The gate stack controls the channel in a region of the heterostructure body under the gate stack. The gate stack includes at least one III-nitride material which gives rise to a second two-dimensional charge carrier gas of a second polarity opposite the first polarity in the gate stack or in the heterostructure body under the gate stack due to piezoelectric effects. The second two-dimensional charge carrier gas counter-balances polarization charges in the first two-dimensional charge carrier gas so that the channel is disrupted under the gate stack.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Inventor: Gilberto Curatola
  • Patent number: 8906534
    Abstract: A device is provided that includes a battery layer on a substrate, where a first battery cell is formed in the battery layer. The first battery cell includes a first anode, a first cathode, and a first electrolyte arranged between the first anode and the first cathode, where the first anode, the first cathode, and the first electrolyte are arranged in the battery layer such that perpendicular projections onto the substrate of each of the first anode and the first cathode are non-overlapping. A method of manufacturing such device is also provided. A system is also provide that includes such device for supplying power to an electronic device.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: December 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Romano Hoofman, Aurelie Humbert, Matthias Merz, Youri Victorovitch Ponomarev, Remco Henricus Wilhelmus Pijnenburg, Gilberto Curatola
  • Patent number: 8900985
    Abstract: A compound semiconductor device is manufactured by forming an III-nitride compound semiconductor device structure on a silicon-containing semiconductor substrate, the III-nitride compound semiconductor device structure including a GaN alloy on GaN and a channel region arising near an interface between the GaN alloy and the GaN. One or more silicon-containing insulating layers are formed on a surface of the III-nitride compound semiconductor device structure adjacent the GaN alloy, and a contact opening is formed which extends through the one or more silicon-containing insulating layers to at least the GaN alloy. A region of GaN is regrown in the contact opening, and the regrown region of GaN is doped exclusively with Si out-diffused from the one or more silicon-containing insulating layers to form an ohmic contact which is doped only with the Si out-diffused from the one or more silicon-containing insulating layers.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: December 2, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Gilberto Curatola, Gianmauro Pozzovivo, Simone Lavanga
  • Patent number: 8835932
    Abstract: A tunnel transistor includes a first compound semiconductor, a second compound semiconductor on the first compound semiconductor, and a third compound semiconductor on the second compound semiconductor. A source extends through the second compound semiconductor into the first compound semiconductor. A drain spaced apart from the source extends through the third compound semiconductor into the second compound semiconductor. A first two-dimensional charge carrier gas extends in the first compound semiconductor from the source toward the drain and ends prior to reaching the drain. A second two-dimensional charge carrier gas extends in the second compound semiconductor from the drain toward the source and ends prior to reaching the source. A gate is over the first and second two-dimensional charge carrier gases. A corresponding method of manufacturing the tunnel transistor is also provided.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: September 16, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Gilberto Curatola, Oliver Häberlen
  • Patent number: 8823443
    Abstract: A charge-pump circuit a plurality of transistor stages connected in series between a supply voltage input node and a boosted voltage output node, wherein at least one transistor stage comprises a multiple-gate transistor, which transistor comprises at least two gates, of which one is a first gate for switching the transistor on or off according to a voltage applied to the first gate, and one is an additional second gate for controlling the threshold voltage of the multiple-gate transistor, independently of the first gate, according to a control voltage applied to the second gate.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: September 2, 2014
    Assignee: NXP B.V.
    Inventors: Gilberto Curatola, Youri Victorovitch Ponomarev
  • Patent number: 8801917
    Abstract: The invention relates to a method of determining a charged particle concentration in an analyte (100), the method comprising steps of: i) determining at least two measurement points of a surface-potential versus interface-temperature curve (c1, c2, c3, c4), wherein the interface temperature is obtained from a temperature difference between a first interface between a first ion-sensitive dielectric (Fsd) and the analyte (100) and a second interface between a second ion-sensitive dielectric (Ssd) and the analyte (100), and wherein the surface-potential is obtained from a potential difference between a first electrode (Fe) and a second electrode (Se) onto which said first ion-sensitive dielectric (Fsd) and said second ion-sensitive dielectric (Ssd) are respectively provided, And ii) calculating the charged particle concentration from locations of the at least two measurement points of said curve (c1, c2, c3, c4).
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: August 12, 2014
    Assignee: NXP, B.V.
    Inventors: Matthias Merz, Youri Victorovitch Ponomarev, Gilberto Curatola
  • Publication number: 20140124791
    Abstract: A high electron mobility transistor includes a source, a gate and a drain, a first III-V semiconductor region, and a second III-V semiconductor region below the first III-V semiconductor region. The high electron mobility transistor further includes a compensation structure interposed between the first and second III-V semiconductor regions so that the first and second III-V semiconductor regions are spaced apart from one another by the compensation structure. The compensation structure has a different band gap than the first and second III-V semiconductor regions.
    Type: Application
    Filed: January 15, 2014
    Publication date: May 8, 2014
    Applicant: Infineon Technologies Austria AG
    Inventors: Gilberto Curatola, Oliver Häberlen
  • Patent number: 8709885
    Abstract: A method of manufacturing Schottky diodes in a CMOS process includes forming wells, including first wells (16) for forming CMOS devices and second wells (18) for forming Schottky devices. Then, transistors are formed in the first wells, the second wells protected with a protection layer (20) and suicide contacts (40) formed to source and drain regions in the first wells. The protection layer is then removed, a Schottky material deposited and etched away except in a contact region in each second well to form a Schottky contact between the Schottky material (74) and each second well (18).
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: April 29, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Georgios Vellianitis, Gilberto Curatola, Kyriaki Fotopoulou, Nader Akil
  • Publication number: 20140103398
    Abstract: A compound semiconductor device includes a plurality of high-resistance crystalline silicon epitaxial layers and a plurality of activated dopant regions disposed in a same region of at least some of the epitaxial layers so that the activated dopant regions are aligned in a vertical direction perpendicular to a main surface of the epitaxial layers. The compound semiconductor device further includes an III-nitride compound semiconductor device structure disposed on the main surface of the epitaxial layers. The III-nitride compound semiconductor device structure has a source, a drain and a gate. An electrically conductive structure is formed from the activated dopant regions. The electrically conductive structure extends in the vertical direction through the epitaxial layers with the activated dopant regions toward the III-nitride compound semiconductor device structure, and is electrically connected to the source.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 17, 2014
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Gilberto Curatola, Gianmauro Pozzovivo, Simone Lavanga