Patents by Inventor Gilberto Curatola

Gilberto Curatola has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140106516
    Abstract: A compound semiconductor device is manufactured by forming an III-nitride compound semiconductor device structure on a silicon-containing semiconductor substrate, the III-nitride compound semiconductor device structure including a GaN alloy on GaN and a channel region arising near an interface between the GaN alloy and the GaN. One or more silicon-containing insulating layers are formed on a surface of the III-nitride compound semiconductor device structure adjacent the GaN alloy, and a contact opening is formed which extends through the one or more silicon-containing insulating layers to at least the GaN alloy. A region of GaN is regrown in the contact opening, and the regrown region of GaN is doped exclusively with Si out-diffused from the one or more silicon-containing insulating layers to form an ohmic contact which is doped only with the Si out-diffused from the one or more silicon-containing insulating layers.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 17, 2014
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Gilberto Curatola, Gianmauro Pozzovivo, Simone Lavanga
  • Patent number: 8674372
    Abstract: A high electron mobility transistor includes a source, gate and drain, a first III-V semiconductor region having a two-dimensional electron gas (2DEG) which provides a first conductive channel controllable by the gate between the source and drain, and a second III-V semiconductor region below the first III-V semiconductor region and having a second conductive channel connected to the source or drain and not controllable by the gate. The first and second III-V semiconductor regions are spaced apart from one another by a region of the high electron mobility transistor having a different band gap than the first and second III-V semiconductor regions.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: March 18, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Gilberto Curatola, Oliver Häberlen
  • Patent number: 8659104
    Abstract: A field-effect magnetic sensor facilitates highly-sensitive magnetic field detection. In accordance with one or more example embodiments, current flow respectively between first and second source/drain terminals and a third source/drain terminal is controlled using inversion layers in separate channel regions for each of the first and second terminals. In response to a magnetic field, a greater amount of current is passed between the third source/drain terminal and one of the first and second source/drain terminals, relative to an amount of current passed between the third source/drain terminal and the other one of the first and second source/drain terminals.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: February 25, 2014
    Assignee: NXP B.V.
    Inventors: Gilberto Curatola, Victor Zieren, Anco Heringa
  • Publication number: 20140034962
    Abstract: A tunnel transistor includes a first compound semiconductor, a second compound semiconductor on the first compound semiconductor, and a third compound semiconductor on the second compound semiconductor. A source extends through the second compound semiconductor into the first compound semiconductor. A drain spaced apart from the source extends through the third compound semiconductor into the second compound semiconductor. A first two-dimensional charge carrier gas extends in the first compound semiconductor from the source toward the drain and ends prior to reaching the drain. A second two-dimensional charge carrier gas extends in the second compound semiconductor from the drain toward the source and ends prior to reaching the source. A gate is over the first and second two-dimensional charge carrier gases. A corresponding method of manufacturing the tunnel transistor is also provided.
    Type: Application
    Filed: October 11, 2013
    Publication date: February 6, 2014
    Inventors: Gilberto Curatola, Oliver Häberlen
  • Patent number: 8637375
    Abstract: A method of manufacturing a tunnel field effect transistor is disclosed. The method comprises forming a two-step profile in a silicon substrate (100) using a patterned hard mask (104) covering the higher steps of said profile; forming a gate stack (114, 116) against the side wall of the higher step; forming spacers (122) on either side of the gate stack (118); and implanting a first type impurity (124) in the higher step and an opposite type impurity in the neighboring lower step (120), wherein at least the first type impurity is implanted using an angled implanting step after removing the patterned hard mask (104). In a preferred embodiment, the method further comprises forming a sacrificial spacer (108) against a side wall of a higher step and the side wall of the hard mask (104); further etching the lower step (106, 110) next to said spacer (108) and subsequently growing a further semiconductor portion (112) on said lower step and removing the spacer (108) prior to forming the gate stack.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: January 28, 2014
    Assignee: NXP B.V.
    Inventors: Gilberto Curatola, Marcus J. H. Van Dal
  • Publication number: 20140008658
    Abstract: A transistor device includes a heterostructure body having a source, a drain spaced apart from the source and a two-dimensional charge carrier gas channel between the source and the drain. The transistor device further includes a piezoelectric gate on the heterostructure body. The piezoelectric gate is operable to control the channel below the piezoelectric gate by increasing or decreasing a force applied to the heterostructure body responsive to a voltage applied to the piezoelectric gate.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 9, 2014
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Ralf Siemieniec, Gilberto Curatola
  • Publication number: 20130320350
    Abstract: A transistor device includes a compound semiconductor body having a first surface and a two-dimensional charge carrier gas disposed below the first surface in the compound semiconductor body. The transistor device further includes a source in contact with the two-dimensional charge carrier gas and a drain spaced apart from the source and in contact with the two-dimensional charge carrier gas. A first passivation layer is in contact with the first surface of the compound semiconductor body, and a second passivation layer is disposed on the first passivation layer. The second passivation layer has a different etch rate selectivity than the first passivation layer. A gate extends through the second passivation layer into the first passivation layer.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 5, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Oliver Häberlen, Gilberto Curatola
  • Patent number: 8586993
    Abstract: Disclosed herein are embodiments of a normally-off compound semiconductor tunnel field effect transistor having a drive current above 100 mA per mm of gate length and a sub-threshold slope below 60 mV per decade at room temperature, and methods of manufacturing such a normally-off compound semiconductor tunnel transistor. The compound semiconductor tunnel field effect transistor is fast-switching and can be used for high voltage applications e.g. 30V up to 600V and higher.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: November 19, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Gilberto Curatola, Oliver Häberlen
  • Patent number: 8569799
    Abstract: A semiconductor device such as a diode or transistor includes a semiconductor substrate, a first region of III-V semiconductor material on the semiconductor substrate and a second region of III-V semiconductor material on the first region. The second region is spaced apart from the semiconductor substrate by the first region. The second region is of a different composition than the first region. The semiconductor device further includes a buried contact extending from the semiconductor substrate to the second region through the first region. The buried contact electrically connects the second region to the semiconductor substrate.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: October 29, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Gilberto Curatola, Guanmauro Pozzovivo, Oliver Häberlen
  • Publication number: 20130256699
    Abstract: A transistor device includes a compound semiconductor body, a drain disposed in the compound semiconductor body and a source disposed in the compound semiconductor body and spaced apart from the drain by a channel region. A gate is provided for controlling the channel region. The transistor device further includes a gate overvoltage protection device connected between the source and the gate, the gate overvoltage protection device including p-type and n-type silicon-containing semiconductor material.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: Infineon Technologies Austria AG
    Inventors: Martin Vielemeyer, Michael Hutzler, Gilberto Curatola, Gianmauro Pozzovivo
  • Publication number: 20130221366
    Abstract: Disclosed herein are embodiments of a normally-off compound semiconductor tunnel field effect transistor having a drive current above 100 mA per mm of gate length and a sub-threshold slope below 60 mV per decade at room temperature, and methods of manufacturing such a normally-off compound semiconductor tunnel transistor. The compound semiconductor tunnel field effect transistor is fast-switching and can be used for high voltage applications e.g. 30V up to 600V and higher.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 29, 2013
    Applicant: Infineon Technologies Austria AG
    Inventors: Gilberto Curatola, Oliver Häberlen
  • Publication number: 20130153967
    Abstract: A semiconductor device includes a first compound semiconductor material and a second compound semiconductor material on the first compound semiconductor material. The second compound semiconductor material comprises a different material than the first compound semiconductor material such that the first compound semiconductor material has a two-dimensional electron gas (2DEG). The semiconductor device further includes a buried field plate disposed in the first compound semiconductor material and electrically connected to a terminal of the semiconductor device. The 2DEG is interposed between the buried field plate and the second compound semiconductor material.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Gilberto Curatola, Oliver Häberlen
  • Publication number: 20130153919
    Abstract: A semiconductor device such as a diode or transistor includes a semiconductor substrate, a first region of III-V semiconductor material on the semiconductor substrate and a second region of III-V semiconductor material on the first region. The second region is spaced apart from the semiconductor substrate by the first region. The second region is of a different composition than the first region. The semiconductor device further includes a buried contact extending from the semiconductor substrate to the second region through the first region. The buried contact electrically connects the second region to the semiconductor substrate.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Gilberto Curatola, Gianmauro Pozzovivo, Oliver Häberlen
  • Publication number: 20130043484
    Abstract: A high electron mobility transistor includes a source, gate and drain, a first III-V semiconductor region having a two-dimensional electron gas (2DEG) which provides a first conductive channel controllable by the gate between the source and drain, and a second III-V semiconductor region below the first III-V semiconductor region and having a second conductive channel connected to the source or drain and not controllable by the gate. The first and second III-V semiconductor regions are spaced apart from one another by a region of the high electron mobility transistor having a different band gap than the first and second III-V semiconductor regions.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Applicant: Infineon Technologies Austria AG
    Inventors: Gilberto Curatola, Oliver Häberlen
  • Patent number: 8362561
    Abstract: A transistor device (10), the transistor device (10) comprising a substrate (11, 14), a fin (3, 3A) aligned along a horizontal direction on the substrate (11, 14), a first source/drain region (4) of a first type of conductivity in the fin (3, 3A), a second source/drain region (5) of a second type of conductivity in the fin (3, 3A), wherein the first type of conductivity differs from the second type of conductivity, a channel region (33) in the fin (3, 3A) between the first source/drain region (4) and the second source/drain region (5), a gate insulator (6) on the channel region (33), and a gate structure (7, 8) on the gate insulator (6), wherein the sequence of the first source/drain region (4), the channel region (33) and the second source/drain region (5) is aligned along the horizontal direction.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: January 29, 2013
    Assignee: NXP B.V.
    Inventors: Sebastien Nuttinck, Gilberto Curatola
  • Publication number: 20120280278
    Abstract: A normally-off transistor includes a first region of III-V semiconductor material, a second region of III-V semiconductor material on the first region, a third region of III-V semiconductor material on the second region and a gate electrode adjacent at least one sidewall of the third region. The first region provides a channel of the transistor. The second region has a band gap greater than the band gap of the first region and causes a 2-D electron gas (2DEG) in the channel. The second region is interposed between the first region and the third region. The third region provides a gate of the transistor and has a thickness sufficient to deplete the 2DEG in the channel so that the transistor has a positive threshold voltage.
    Type: Application
    Filed: May 4, 2011
    Publication date: November 8, 2012
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Gilberto Curatola, Oliver Häberlen, Gianmauro Pozzovivo
  • Publication number: 20120228717
    Abstract: A method of manufacturing Schottky diodes in a CMOS process includes forming wells, including first wells (16) for forming CMOS devices and second wells (18) for forming Schottky devices. Then, transistors arc formed in the first wells, the second wells protected with a protection layer (20) and suicide contacts (40) formed to source and drain regions in the first wells. The protection layer is then removed, a Schottky material deposited and etched away except in a contact region in each second well to form a Schottky contact between the Schottky material (74) and each second well (18).
    Type: Application
    Filed: November 17, 2010
    Publication date: September 13, 2012
    Applicant: Taiwan Semiconductor Manufacturing Co.,Ltd
    Inventors: Georgios Vellianitis, Gilberto Curatola, Kyriaki Fotopoulou, Nader Akil
  • Publication number: 20120199937
    Abstract: An integrated circuit including a Schottky diode, and a method of making the same. The diode includes an active region bordered by an isolation region in a semiconductor substrate of the integrated circuits, a first electrode having a metal contact provided on a surface of the active region, and a second electrode having a silicide contact also provided on the surface of the active region.
    Type: Application
    Filed: October 21, 2010
    Publication date: August 9, 2012
    Inventors: Georgios Vellianitis, Gilberto Curatola, Kyriaki Fotopoulou, Nader Akil
  • Patent number: 8227841
    Abstract: An impact ionization MOSFET is formed with the offset from the gate to one of the source/drain regions disposed vertically within the device structure rather than horizontally. The semiconductor device comprises a first source/drain region having a first doping level; a second source/drain region having a second doping level and of opposite dopant type to the first source/drain region, the first and second source/drain regions being laterally separated by a silicon-germanium intermediate region having a doping level less than either of the first and second doping levels; a gate electrode electrically insulated from, and disposed over, the intermediate region, the first and second source/drain regions being laterally aligned with the gate electrode; where the entire portion of the first source/drain region that forms a boundary with the intermediate region is separated vertically from the top of the intermediate region.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: July 24, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Gilberto Curatola
  • Publication number: 20120154019
    Abstract: A field-effect magnetic sensor facilitates highly-sensitive magnetic field detection. In accordance with one or more example embodiments, current flow respectively between first and second source/drain terminals and a third source/drain terminal is controlled using inversion layers in separate channel regions for each of the first and second terminals. In response to a magnetic field, a greater amount of current is passed between the third source/drain terminal and one of the first and second source/drain terminals, relative to an amount of current passed between the third source/drain terminal and the other one of the first and second source/drain terminals.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 21, 2012
    Inventors: Gilberto Curatola, Victor Zieren, Anco Heringa