Patents by Inventor Girish Dixit

Girish Dixit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20010032783
    Abstract: A target and magnetron for a plasma sputter reactor. The target has an annular vault facing the wafer to be sputter coated. Preferably, the magnetron includes annular magnets of opposed polarities disposed behind the two vault sidewalls and a small closed unbalanced magnetron of nested magnets of opposed polarities scanned along the vault roof. The nested magnets are rotated along the vault. An integrated copper via filling process with the inventive reactor or other reactor includes a first step of highly ionized sputter deposition of copper, which can optionally be used to remove the barrier layer at the bottom of the via, a second step of more neutral, lower-energy sputter deposition of copper to complete the seed layer, and a third step of electroplating copper into the hole to complete the metallization. The first two steps can be also used with barrier metals.
    Type: Application
    Filed: May 11, 2001
    Publication date: October 25, 2001
    Inventors: Praburam Gopalraja, Jianming Fu, Fusen Chen, Girish Dixit, Zheng Xu, Wei Wang, Ashok K. Sinha
  • Patent number: 6297125
    Abstract: Air-bridges are formed at controlled lateral separations using the extremely high HF etch rate of a gap-fill spin-on-glass such as uncured hydrogen silsequioxane (HSQ) in combination with other dielectrics having a much slower etch rate in HF. The advantages of an air-bridge system with controlled lateral separations include providing an interconnect isolation dielectric which meets all requirements for sub-0.5 micron technologies and providing a device with reduced reliability problems.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: October 2, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Somnath S. Nag, Amitava Chatterjee, Girish A. Dixit
  • Patent number: 6287963
    Abstract: A method is provided for depositing aluminum thin film layers to form contacts in a semiconductor integrated circuit device. All or some of the deposition process occurs at relatively low deposition rates at a temperature which allows surface migration of the deposited aluminum atoms. Aluminum deposited under these conditions tends to fill contact vias without the formation of voids. The deposition step is periodically interrupted.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: September 11, 2001
    Assignee: STMicroelectronics, Inc.
    Inventors: Fusen E. Chen, Fu-Tai Liou, Girish A. Dixit, Che-Chia Wei
  • Patent number: 6277249
    Abstract: A target and magnetron for a plasma sputter reactor. The target has an annular trough facing the wafer to be sputter coated. Various types of magnetic means positioned around the trough create a magnetic field supporting a plasma extending over a large volume of the trough. For example, the magnetic means may include magnets disposed on one side within a radially inner wall of the trough and on another side outside of a radially outer wall of the trough to create a magnetic field extending across the trough, to thereby support a high-density plasma extending from the top to the bottom of the trough. The large plasma volume increases the probability that the sputtered metal atoms will become ionized. The magnetic means may include a magnetic coil, may include additional magnets in back of the trough top wall to increase sputtering there, and may include confinement magnets near the bottom of the trough sidewalls.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: August 21, 2001
    Assignee: Applied Materials Inc.
    Inventors: Praburam Gopalraja, Jianming Fu, Fusen Chen, Girish Dixit, Zheng Xu, Sankaram Athreya, Wei D. Wang, Ashok K. Sinha
  • Patent number: 6274008
    Abstract: A target and magnetron for a plasma sputter reactor. The target has an annular vault facing the wafer to be sputter coated. Various types of magnetic means positioned around the vault create a magnetic field supporting a plasma extending over a large volume of the vault. An integrated copper via filling process includes a first step of highly ionized sputter deposition of copper, a second step of more neutral, lower-energy sputter deposition of copper to complete the seed layer, and electroplating copper into the hole to complete the metallization.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: August 14, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Praburam Gopalraja, Jianming Fu, Fusen Chen, Girish Dixit, Zheng Xu, Sankaram Athreya, Wei D. Wang, Ashok K. Sinha
  • Patent number: 6268297
    Abstract: A low-temperature pre-metal dielectric deposition process using phosphine-based chemistry in a high-density plasma chemical-vapor deposition technique. The process uses a phosphorous-doped oxide of up to 3.5 percent (wt) deposited at less than 350 degrees C. capable of filling 0.4 micron spaces between poly-silicon gates without microvoids.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: July 31, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Somnath S. Nag, Gregory B. Shinn, Girish A. Dixit
  • Patent number: 6251771
    Abstract: An embodiment of the instant invention is a method of forming an electronic device over a semiconductor substrate and having at least one level of metallic conductors, the method comprising the steps of: forming a dielectric layer over the semiconductor substrate, the dielectric layer having openings (step 102 of FIG. 1); forming a layer of the metallic conductor on the dielectric layer (step 104 of FIG. 1); removing a portion of the layer of the metallic conductor on the dielectric layer (step 106 of FIG. 1); and subjecting the exposed metallic conductor to a plasma which contains hydrogen or deuterium so as to passivate the metallic conductor (step 110 of FIG. 1). Preferably, the plasma contains a substance selected from the group consisting of: NH3, N2H2, H2S, and CH4, and the metallic conductors are comprised of a material selected from the group consisting of: copper, copper doped aluminum, Ag, Sn, Pb, Ti, Cr, Mg, Ta, and any combination thereof.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: June 26, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Patricia B. Smith, Girish A. Dixit, Eden Zielinski, Stephen W. Russell
  • Patent number: 6159847
    Abstract: AlCu alloys with higher Cu content are added in thin layers within a metallization structure. The increased Cu content provided by the thin layer improves interconnect reliability and reduces the effects of electromigration with minimal effect on plasma etch and cleanup processes.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: December 12, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Robert H. Havemann, Girish A. Dixit
  • Patent number: 6130156
    Abstract: A method of fabricating an interconnect wherein there is initially provided a first layer of electrically conductive interconnect (3). A via (7) is formed which is defined by walls extending to the first layer of interconnect. A layer of titanium (9) is formed between the electrically conductive interconnect and the first layer of electrically conductive metal (11). A first layer of electrically conductive metal is formed on the walls of the via having a predetermined etch rate relative to a specific etch species and a second layer of electrically conductive metal (13) is formed on the first layer of electrically conductive metal having an etch rate relative to the specific etch species greater than the first layer and which preferably extends into the via.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: October 10, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Robert H. Havemann, Girish A. Dixit, Stephen W. Russell
  • Patent number: 5930673
    Abstract: A method is provided for depositing aluminum thin film layers to form contacts in a semiconductor integrated circuit device. All or some of the deposition process occurs at relatively low deposition rates at a temperature which allows improved surface migration of the deposited aluminum atoms. Aluminum deposited under these conditions tends to fill contact vias without the formation of voids. The low temperature deposition step can be initiated by depositing aluminum while a wafer containing the integrated circuit device is being heated from cooler temperatures within the deposition chamber.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: July 27, 1999
    Assignee: STMicroelectronics, Inc.
    Inventors: Fusen E. Chen, Fu-Tai Liou, Yih-Shung Lin, Girish A. Dixit, Che-Chia Wei
  • Patent number: 5849367
    Abstract: An elemental titanium-free liner and cavity cleansing process is provided that allows for the elimination of conventional sputter etch and elemental titanium depositions. A low power plasma etch provides for pre-conditioning/cleansing of cavities such as contacts and vias. A refractory metal is provided as a cavity liner. Preferably, the liner is comprised of several discrete refractory metal liner layers, each having a thickness of about 25-100 .ANG., that can be applied by CVD and/or PVD. A low power plasma cleanse is preferably interposed between each liner layer deposition. A suitable metal plug can be deposited and directed into the cavity to complete cavity filling. Preferably, the metal plug is an elemental aluminum or aluminum alloy plug that is deposited by CVD and force-filled into the cavity to reduce the incidence of micro-voids within the cavity.Elimination of the conventional sputter etch and the high temperature processing (temp..gtoreq..sup..about. 400.degree. C.
    Type: Grant
    Filed: December 11, 1996
    Date of Patent: December 15, 1998
    Assignee: Texas Instruments Incorporated
    Inventors: Girish A. Dixit, Anthony J. Konecni
  • Patent number: 5847457
    Abstract: A method is provided for forming a contact opening or via of a semiconductor integrated circuit, and an integrated circuit formed according to the same. A first metal region is formed over an underlying region. A first insulating layer is formed over the integrated circuit. A second insulating layer is then formed over the first insulating layer. A portion of the second insulating layer is etched to expose a portion of the first insulating layer wherein the exposed first insulating layer and the remaining second insulating layer form a substantially planar surface. A metal oxide layer is formed over the exposed first insulating layer and the remaining second insulating layer. A photoresist layer is formed and patterned over the metal oxide layer. The metal oxide layer is then selectively etched to form a via exposing a portion of the first insulating layer. The first insulating layer in the via is then selectively etched to expose a portion of the first metal region.
    Type: Grant
    Filed: October 24, 1996
    Date of Patent: December 8, 1998
    Assignee: STMicroelectronics, Inc.
    Inventors: Fusen E. Chen, Fu-Tai Liou, Girish A. Dixit
  • Patent number: 5593921
    Abstract: A method is provided for forming a contact opening or via of a semiconductor integrated circuit, and an integrated circuit formed according to the same. A first metal region is formed over an underlying region. A first insulating layer is formed over the integrated circuit. A second insulating layer is then formed over the first insulating layer. A portion of the second insulating layer is etched to expose a portion of the first insulating layer wherein the exposed first insulating layer and the remaining second insulating layer form a substantially planar surface. A metal oxide layer is formed over the exposed first insulating layer and the remaining second insulating layer. A photoresist layer is formed and patterned over the metal oxide layer. The metal oxide layer is then selectively etched to form a via exposing a portion of the first insulating layer. The first insulating layer in the via is then selectively etched to expose a portion of the first metal region.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: January 14, 1997
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Fusen E. Chen, Fu-Tai Liou, Girish A. Dixit
  • Patent number: 5582971
    Abstract: A method is provided for patterning a submicron semiconductor layer of an integrated circuit, and an integrated circuit formed according to the same. A conductive structure is formed on the integrated circuit. A dielectric layer is formed over the integrated circuit. A contact opening is formed in the dielectric layer exposing a portion of the underlying first conductive structure. A barrier layer is formed on the dielectric layer and in the contact opening. A substantially conformal layer is formed over the barrier layer and in the contact opening. The conformal layer is partially etched away wherein the conformal layer remains only in a bottom portion of the contact opening. A second conductive layer is formed over the barrier layer and the remaining conformal layer.
    Type: Grant
    Filed: May 3, 1995
    Date of Patent: December 10, 1996
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Fusen E. Chen, Robert O. Miller, Girish A. Dixit
  • Patent number: 5578872
    Abstract: A method is provided for patterning a submicron semiconductor layer of an integrated circuit, and an integrated circuit formed according to the same. A first conductive structure is formed over the integrated circuit. A dielectric is formed over the first conductive structure having a contact opening exposing a portion of the underlying first conductive layer. A barrier layer is formed in the bottom of the contact opening. A second, substantially conformal conductive layer is formed by chemical vapor deposition over the dielectric layer; along the sidewalls and in the bottom of the contact opening. A third conductive layer is then formed over the second conductive layer wherein the third conductive layer does not fill the contact opening. The second and third conductive layers are etched to form an interconnect substantially over the contact opening.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: November 26, 1996
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Fusen E. Chen, Girish A. Dixit, Robert O. Miller
  • Patent number: 5571752
    Abstract: A method is provided for patterning a submicron semiconductor layer of an integrated circuit, and an integrated circuit formed according to the same. A first conductive structure is formed over the integrated circuit. A dielectric is formed over the first conductive structure having a contact opening exposing a portion of the underlying first conductive layer. A barrier layer is formed in the bottom of the contact opening. A second, substantially conformal conductive layer is formed by chemical vapor deposition over the dielectric layer; along the sidewalls and in the bottom of the contact opening. A third conductive layer is then formed over the second conductive layer wherein the third conductive layer does not fill the contact opening. The second and third conductive layers are etched to form an interconnect substantially over the contact opening.
    Type: Grant
    Filed: January 9, 1995
    Date of Patent: November 5, 1996
    Assignee: SGS-THOMSON Microelectronics, Inc.
    Inventors: Fusen E. Chen, Girish A. Dixit, Robert O. Miller
  • Patent number: 5523624
    Abstract: A method is provided for patterning a submicron semiconductor layer of an integrated circuit, and an integrated circuit formed according to the same. A conductive structure is formed on the integrated circuit. A dielectric layer is formed over the integrated circuit. A contact opening is formed in the dielectric layer exposing a portion of the underlying first conductive structure. A barrier layer is formed on the dielectric layer and in the contact opening. A substantially conformal layer is formed over the barrier layer and in the contact opening. The conformal layer is partially etched away wherein the conformal layer remains only in a bottom portion of the contact opening. A second conductive layer is formed over the barrier layer and the remaining conformal layer.
    Type: Grant
    Filed: August 26, 1993
    Date of Patent: June 4, 1996
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Fusen E. Chen, Robert O. Miller, Girish A. Dixit
  • Patent number: 5521411
    Abstract: A method is provided for forming a transistor spacer etch endpoint structure of an integrated circuit, and an integrated circuit formed according to the same. A gate is formed over a portion of a substrate. A dielectric layer is formed over the integrated circuit and an oxide layer is formed over the dielectric layer. the oxide layer is patterned and etched to form sidewall oxide spacers on each side of the gate and over a portion of the dielectric layer. The dielectric layer not covered by the sidewall oxide spacers is then removed.
    Type: Grant
    Filed: July 7, 1994
    Date of Patent: May 28, 1996
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Fusen E. Chen, Frank R. Bryant, Girish A. Dixit
  • Patent number: 5510294
    Abstract: A method is provided for forming a via for multilevel metallization of an integrated circuit, and an integrated circuit formed according to the same. A first conductive layer is formed over the integrated circuit. A first dielectric layer is then, formed over the first conductive layer. A second dielectric layer over the first dielectric layer and a second conductive layer is formed over the second dielectric layer. A photoresist layer is formed and patterned over the second conductive layer to expose a portion of the second conductive layer. The second conductive layer is etched to form an opening exposing a portion of the second dielectric layer. The second dielectric layer is then etched in the opening to form partially sloped sidewalls sloping outward at an upper surface of the dielectric layer. The photoresist layer is removed. The remaining second dielectric layer and the first electric layer is then anisotropically etched in the opening exposing the portion of the first conductive layer in the opening.
    Type: Grant
    Filed: May 26, 1995
    Date of Patent: April 23, 1996
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Girish A. Dixit, Fusen E. Chen, Alexander Kalnitsky
  • Patent number: 5493144
    Abstract: A method is provided for forming a field programmable device of a semiconductor integrated circuit, and an integrated circuit formed according to the same. A first conductive layer is formed. A first, fusible, dielectric layer is formed over the first conductive layer. The dielectric layer is patterned and etched to form a plurality of dielectric regions exposing portions of the first conductive layer. A second dielectric layer is then formed over the dielectric regions and the exposed portions of the first conductive layer. A plurality of contact openings through the second dielectric layer are formed to expose portions of the first conductive layer and portions of the dielectric regions. A second conductive layer is then formed over the second dielectric layer and in the contact openings.
    Type: Grant
    Filed: June 10, 1994
    Date of Patent: February 20, 1996
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Frank R. Bryant, Fusen E. Chen, Girish A. Dixit