Patents by Inventor Glenn J. Martyna

Glenn J. Martyna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130164882
    Abstract: Disclosed is a method which includes forming a bottom metallic electrode on an insulating substrate; forming a semiconductor junction on the metallic electrode; forming a transparent conducting overlayer in contact with the semiconductor junction; and forming a metallic layer in contact with the transparent conducting overlayer, wherein the metallic layer is formed by a plating process. The plating process may be an electroplating process or an electroless plating process. The transparent conducting overlayer may be carbon nanotubes or graphene. The semiconductor junction may be a p-i-n semiconductor junction, a p-n semiconductor junction, an n-p semiconductor junction or an n-i-p semiconductor junction.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 27, 2013
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Ageeth A. Bol, Mostafa M. EI-Ashry, Amal Kasry, Ahmed Maarouf, Glenn J. Martyna, Dennis M. Newns, Razvan Nistor, George S. Tulevski
  • Publication number: 20130143769
    Abstract: A graphene nanomesh based charge sensor and method for producing a graphene nanomesh based charge sensor. The method includes generating multiple holes in graphene in a periodic way to create a graphene nanomesh with a patterned array of multiple holes, passivating an edge of each of the multiple holes of the graphene nanomesh to allow for functionalization of the graphene nanomesh, and functionalizing the passivated edge of each of the multiple holes of the graphene nanomesh with a chemical compound that facilitates chemical binding of a receptor of a target molecule to the edge of one or more of the multiple holes, allowing the target molecule to bind to the receptor, causing a charge to be transferred to the graphene nanomesh to produce a graphene nanomesh based charge sensor for the target molecule.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 6, 2013
    Applicants: EGYPT NANOTECHNOLOGY CENTER (EGNC), INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Shu-jen Han, Amal Kasry, Ahmed Maarouf, Glenn J. Martyna, Razvan Nistor, Hsinyu Tsai
  • Publication number: 20130143000
    Abstract: An apparatus and method for forming a patterned graphene layer on a substrate. One such method includes forming at least one patterned structure of a carbide-forming metal or metal-containing alloy on a substrate, applying a layer of graphene on top of the at least one patterned structure of a carbide-forming metal or metal-containing alloy on the substrate, heating the layer of graphene on top of the at least one patterned structure of a carbide-forming metal or metal-containing alloy in an environment to remove graphene regions proximate to the at least one patterned structure of a carbide-forming metal or metal-containing alloy, and removing the at least one patterned structure of a carbide-forming metal or metal-containing alloy to produce a patterned graphene layer on the substrate, wherein the patterned graphene layer on the substrate provides carrier mobility for electronic devices.
    Type: Application
    Filed: December 5, 2011
    Publication date: June 6, 2013
    Applicants: EGYPT NANOTECHNOLOGY CENTER (EGNC), INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Ahmed Maarouf, Glenn J. Martyna, Katherine Saenger
  • Publication number: 20130131383
    Abstract: A method, an apparatus and an article of manufacture for attracting charged nanoparticles using a graphene nanomesh. The method includes creating a graphene nanomesh by generating multiple holes in graphene, wherein each of the multiple holes is of a size appropriate to a targeted charged nanoparticle, selectively passivating the multiple holes of the graphene nanomesh to form a charged ring in the graphene nanomesh by treating the graphene nanomesh with chemistry yielding a trap with an opposite charge to that of the targeted nanoparticle, and electrostatically attracting the target charged nanoparticle to the oppositely charged ring to facilitate docking of the charged nanoparticle to the graphene nanomesh.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Ahmed Maarouf, Glenn J. Martyna
  • Publication number: 20130130037
    Abstract: A nanotube-graphene hybrid film and method for forming a cleaned nanotube-graphene hybrid film. The method includes depositing nanotube film over a substrate to produce a layer of nanotube film, removing impurities from a surface of the layer of nanotube film not contacting the substrate to produce a cleaned layer of nanotube film, depositing a layer of graphene over the cleaned layer of nanotube film to produce a nanotube-graphene hybrid film, and removing impurities from a surface of the nanotube-graphene hybrid film to produce a cleaned nanotube-graphene hybrid film, wherein the hybrid film has improved electrical performance. Another method includes depositing nanotube film over a metal foil to produce a layer of nanotube film, placing the metal foil with as-deposited nanotube film in a chemical vapor deposition furnace to grow graphene on the nanotube film to form a nanotube-graphene hybrid film, and transferring the nanotube-graphene hybrid film over a substrate.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ageeth A. Bol, Bhupesh Chandra, Amal Kasry, Ahmed Maarouf, Glenn J. Martyna, George S. Tulevski
  • Patent number: 8405279
    Abstract: A coupling structure for coupling piezoelectric material generated stresses to an actuated device of an integrated circuit includes a rigid stiffener structure formed around a piezoelectric (PE) material and the actuated device, the actuated device comprising a piezoresistive (PR) material that has an electrical resistance dependent upon an applied pressure thereto; and a soft buffer structure formed around the PE material and PR material, the buffer structure disposed between the PE and PR materials and the stiffener structure, wherein the stiffener structure clamps both the PE and PR materials to a substrate over which the PE and PR materials are formed, and wherein the soft buffer structure permits the PE material freedom to move relative to the PR material, thereby coupling stress generated by an applied voltage to the PE material to the PR material so as change the electrical resistance of the PR material.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: March 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Bruce G. Elmegreen, Lia Krusin-Elbaum, Glenn J. Martyna, Xiao Hu Liu, Dennis M. Newns, Kuan-Neng Chen
  • Publication number: 20130068617
    Abstract: A technique for controlling the motion of one or more charged entities linked to a polymer through a nanochannel is provided. A first reservoir and a second reservoir are connected by the nanochannel. An array of electrodes is positioned along the nanochannel, where fluid fills the first reservoir, the second reservoir, and the nanochannel. A first electrode is in the first reservoir and a second electrode is in the second reservoir. The first and second electrodes are configured to direct the one or more charged entities linked to the polymer into the nanochannel. An array of electrodes is configured to trap the one or more charged entities in the nanochannel responsive to being controlled for trapping. The array of electrodes is configured to move the one or more charged entities along the nanochannel responsive to being controlled for moving.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stanislav Polonsky, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, George F. Walker
  • Publication number: 20130068618
    Abstract: A technique for controlling the motion of one or more charged entities linked to a polymer through a nanochannel is provided. A first reservoir and a second reservoir are connected by the nanochannel. An array of electrodes is positioned along the nanochannel, where fluid fills the first reservoir, the second reservoir, and the nanochannel. A first electrode is in the first reservoir and a second electrode is in the second reservoir. The first and second electrodes are configured to direct the one or more charged entities linked to the polymer into the nanochannel. An array of electrodes is configured to trap the one or more charged entities in the nanochannel responsive to being controlled for trapping. The array of electrodes is configured to move the one or more charged entities along the nanochannel responsive to being controlled for moving.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 21, 2013
    Applicant: International Business Machines Corporation
    Inventors: Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stanislav Polonsky, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, George F. Walker
  • Publication number: 20130028823
    Abstract: A method of making a semiconductor device, includes providing a graphene sheet, creating a plurality of nanoholes in the graphene sheet to form a graphene nanomesh, the graphene nanomesh including a plurality of carbon atoms which are formed adjacent to the plurality of nanoholes, passivating a dangling bond on the plurality of carbon atoms by bonding a passivating element to the plurality of carbon atoms, and doping the passivated graphene nanomesh by bonding a dopant to the passivating element.
    Type: Application
    Filed: July 31, 2011
    Publication date: January 31, 2013
    Applicants: Egypt Nanotechnology Center, International Business Machines Corporation
    Inventors: Ahmed Abou-Kandil, Ahmed Maarouf, Glenn J. Martyna, Hisham Mohamed, Dennis M. Newns
  • Patent number: 8354336
    Abstract: Accordingly, the present invention provides a method of forming an electrode having reduced corrosion and water decomposition on a surface thereof. A substrate which has a conductive layer disposed thereon is provided and the conductive layer has an oxide layer with an exposed surface. The exposed surface of the oxide layer contacts a solution of an organic surface active compound in an organic solvent to form a protective layer of the organic surface active compound over the oxide layer. The protective layer has a thickness of from about 0.5 nm to about 5 nm and ranges therebetween depending on a chemical structure of the surface active compound.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: January 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Shafaat Ahmed, Hariklia Deligianni, Dario L. Goldfarb, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Xiaoyan Shao, Gustavo A. Stolovitzky
  • Publication number: 20130009668
    Abstract: A 4-terminal piezoelectronic transistor (PET) which includes a piezoelectric (PE) material disposed between first and second electrodes; an insulator material disposed on the second electrode; a third electrode disposed on the insulator material and a piezoresistive (PR) material disposed between the third electrode and a fourth electrode. An applied voltage across the first and second electrodes causing a pressure from the PE material to be applied to the PR material through the insulator material, the electrical resistance of the PR material being dependent upon the pressure applied by the PE material. The first and second electrodes are electrically isolated from the third and fourth electrodes. Also disclosed are logic devices fabricated from 4-terminal PETs and a method of fabricating a 4-terminal PET.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 10, 2013
    Applicant: International Business Machines Corporation
    Inventors: Bruce G. Elmegreen, Glenn J. Martyna, Dennis M. Newns, Stephen Rossnagel, Paul M. Solomon
  • Publication number: 20130001082
    Abstract: A technique for nanodevice is provided. A reservoir is filled with an ionic fluid. A membrane separates the reservoir, and the membrane includes electrode layers separated by insulating layers in which the electrode layers have an organic coating. A nanopore is formed through the membrane, and the organic coating on the electrode layers forms transient bonds to a base of a molecule in the nanopore. When a first voltage is applied to the electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels through the transient bonds formed to the base to be measured as a current signature for distinguishing the base.
    Type: Application
    Filed: September 7, 2012
    Publication date: January 3, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stephen M. Rossnagel, Gustavo A. Stolovitzky, Philip S. Waggoner, George F. Walker
  • Publication number: 20120298510
    Abstract: Apparatus, system, and method are provided for cutting a linear charged polymer inside a nanopore. A first voltage is applied to create an electric field in a first direction. A second voltage is applied to create an electric field in a second direction, and the first direction is opposite to the second direction. When the electric field in the first direction and the electric field in the second direction are applied to a linear charged polymer inside a nanopore, the linear charged polymer is cut at a location with predetermined accuracy.
    Type: Application
    Filed: August 9, 2012
    Publication date: November 29, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Binquan Luan, Glenn J. Martyna, Hongbo Peng, Gustavo A. Stolovitsky
  • Publication number: 20120270353
    Abstract: A coupling structure for coupling piezoelectric material generated stresses to an actuated device of an integrated circuit includes a rigid stiffener structure formed around a piezoelectric (PE) material and the actuated device, the actuated device comprising a piezoresistive (PR) material that has an electrical resistance dependent upon an applied pressure thereto; and a soft buffer structure formed around the PE material and PR material, the buffer structure disposed between the PE and PR materials and the stiffener structure, wherein the stiffener structure clamps both the PE and PR materials to a substrate over which the PE and PR materials are formed, and wherein the soft buffer structure permits the PE material freedom to move relative to the PR material, thereby coupling stress generated by an applied voltage to the PE material to the PR material so as change the electrical resistance of the PR material.
    Type: Application
    Filed: June 26, 2012
    Publication date: October 25, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Lia Krusin-Elbaum, Glenn J. Martyna, Xiao Hu Liu, Dennis M. Newns, Kuan-Neng Chen
  • Patent number: 8247947
    Abstract: A coupling structure for coupling piezoelectric material generated stresses to an actuated device of an integrated circuit includes a rigid stiffener structure formed around a piezoelectric (PE) material and the actuated device, the actuated device comprising a piezoresistive (PR) material that has an electrical resistance dependent upon an applied pressure thereto; and a soft buffer structure formed around the PE material and PR material, the buffer structure disposed between the PE and PR materials and the stiffener structure, wherein the stiffener structure clamps both the PE and PR materials to a substrate over which the PE and PR materials are formed, and wherein the soft buffer structure permits the PE material freedom to move relative to the PR material, thereby coupling stress generated by an applied voltage to the PE material to the PR material so as change the electrical resistance of the PR material.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: August 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Bruce G. Elmegreen, Lia Krusin-Elbaum, Glenn J. Martyna, Xiao Hu Liu, Dennis M. Newns, Kuan-Neng Chen
  • Publication number: 20120193235
    Abstract: A nanodevice includes a reservoir filled with a conductive fluid and a membrane separating the reservoir. The membrane includes an insulating layer. A nanopore is formed through the membrane, and an organic coating is provided on the insulating layer to form a transient bond to a DNA molecule in the nanopore. The transient bond is stronger than thermal motion, such that the transient bond can hold the DNA molecule against the thermal motion. When a voltage is applied across the membrane, the voltage will break the transient bond to move the DNA molecule through the nanopore in a controllable state.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 2, 2012
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Philip S. Waggoner
  • Publication number: 20120193231
    Abstract: A nanodevice is provided. A reservoir is filled with an ionic fluid. A membrane separates the reservoir, and the membrane includes electrode layers separated by insulating layers in which the electrode layers have an organic coating. A nanopore is formed through the membrane, and the organic coating on the electrode layers forms transient bonds to a base of a molecule in the nanopore. When a first voltage is applied to the electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels through the transient bonds formed to the base to be measured as a current signature for distinguishing the base.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 2, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stephen M. Rossnagel, Gustavo A. Stolovitzky, Philip S. Waggoner, George F. Walker
  • Patent number: 8159854
    Abstract: A piezo-effect transistor (PET) device includes a piezoelectric (PE) material disposed between first and second electrodes; and a piezoresistive (PR) material disposed between the second electrode and a third electrode, wherein the first electrode comprises a gate terminal, the second electrode comprises a common terminal, and the third electrode comprises an output terminal such that an electrical resistance of the PR material is dependent upon an applied voltage across the PE material by way of an applied pressure to the PR material by the PE material.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Bruce G. Elmegreen, Lia Krusin-Elbaum, Glenn J. Martyna, Xiao Hu Liu, Dennis M. Newns
  • Publication number: 20120000516
    Abstract: A solar cell includes a semiconductor portion, a graphene layer disposed on a first surface of the semiconductor portion, and a first conductive layer patterned on the graphene layer, the first conductive layer including at least one bus bar portion and a plurality of fingers extending from the at least one bus bar portion.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 5, 2012
    Applicants: EGYPT NANOTECHNOLOGY CENTER, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ageeth A. Bol, Amal Kasry, Ahmed Maarouf, Glenn J. Martyna, Dennis M. Newns, Razvan A. Nistor, George S. Tulevski
  • Publication number: 20120000521
    Abstract: A solar cell includes a semiconductor portion, a graphene layer disposed on a first surface of the semiconductor portion, and a first conductive layer patterned on the graphene layer, the first conductive layer including at least one bus bar portion, a plurality of fingers extending from the at least one bus bar portion, and a refractive layer disposed on the first conductive layer.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 5, 2012
    Applicants: EGYPT NANOTECHNOLOGY CENTER, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ageeth A. Bol, Amal Kasry, Marcelo Kuroda, Ahmed Maarouf, Glenn J. Martyna, Dennis M. Newns, Razvan A. Nistor, George S. Tulevski