Patents by Inventor Glenn J. Martyna

Glenn J. Martyna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110308969
    Abstract: The present invention provides a method of reducing corrosion and water decomposition on a surface of an electrode having a titanium nitride conductive layer disposed on a substrate and estimating extent of reduction thereof. The electrode is immersed into a solution containing a hydroxyl-functional compound. Thereafter, a voltage is applied to the titanium nitride conductive layer of the electrode. The extent of oxidation of the titanium nitride conductive layer is correlated with the extent of formation of oxide of titanium nitride and/or the extent of oxidation of the titanium nitride conductive layer is correlated with the increase of surface roughness. The extent of water decomposition is correlated with formation of hydrogen and oxygen bubbles.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Azdakani, Shafaat Ahmed, Hariklia Deligianni, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Xiaoyan Shao, Gustavo A. Stolovitzky
  • Publication number: 20110312176
    Abstract: Accordingly, the present invention provides a method of forming an electrode having reduced corrosion and water decomposition on a surface thereof. A substrate which has a conductive layer disposed thereon is provided and the conductive layer has an oxide layer with an exposed surface. The exposed surface of the oxide layer contacts a solution of an organic surface active compound in an organic solvent to form a protective layer of the organic surface active compound over the oxide layer. The protective layer has a thickness of from about 0.5 nm to about 5 nm and ranges therebetween depending on a chemical structure of the surface active compound.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Shafaat Ahmed, Hariklia Deligianni, Dario L. Goldfarb, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Xiaoyan Shao, Gustavo A. Stolovitzky
  • Publication number: 20110308949
    Abstract: The present invention provides a nano-fluidic field effective device. The device includes a channel having a first side and a second side, a first set of electrodes adjacent to the first side, a second set of electrodes adjacent to the second side, a control unit for applying electric potentials to the electrodes and a fluid within the channel containing a charge molecule. The first set of electrodes is disposed such that application of electric potentials produces a spatially varying electric field that confines a charged molecule within a predetermined area of said channel. The second set of electrodes is disposed such that application of electric potentials relative to the electric potentials applied to the first set of electrodes creates an electric field that confines the charged molecule to an area away from the second side of the channel.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Azdakani, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Dennis M. Newns, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Gustavo Stolovitzky
  • Patent number: 8039250
    Abstract: Apparatus, system, and methods are provided for utilizing piezoelectric material for controlling a polymer through a nanopore. A reservoir is formed filled with conductive fluid. A membrane is formed that separates the reservoir. A nanopore is formed through the membrane. The membrane comprises electrical conductive layers, piezoelectric layers, and insulating layers. The piezoelectric layers are operative to control a size of the nanopore for clamping/releasing a polymer as well as to control the thickness of part of the membrane when a voltage is applied to the piezoelectric layers. Combinations of clamping/releasing the polymer and changing the thickness of part of the membrane can move a polymer through the nanopore at any electrically controlled speed and also stretch or break a polymer in the nanopore.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: October 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hongbo Peng, Gustavo A. Stolovitzky, Stephen M. Rossnagel, Stanislav Polonsky, Binquan Luan, Glenn J. Martyna
  • Publication number: 20110223652
    Abstract: Apparatus, system, and methods are provided for utilizing piezoelectric material for controlling a polymer through a nanopore. A reservoir is formed filled with conductive fluid. A membrane is formed that separates the reservoir. A nanopore is formed through the membrane. The membrane comprises electrical conductive layers, piezoelectric layers, and insulating layers. The piezoelectric layers are operative to control a size of the nanopore for clamping/releasing a polymer as well as to control the thickness of part of the membrane when a voltage is applied to the piezoelectric layers. Combinations of clamping/releasing the polymer and changing the thickness of part of the membrane can move a polymer through the nanopore at any electrically controlled speed and also stretch or break a polymer in the nanopore.
    Type: Application
    Filed: March 15, 2010
    Publication date: September 15, 2011
    Applicant: International Business Machines Corporation
    Inventors: Hongbo Peng, Gustavo A. Stolovitsky, Stephen M. Rossnagel, Stanislav Polonsky, Binquan Luan, Glenn J. Martyna
  • Publication number: 20110224098
    Abstract: Apparatus, system, and method are provided for cutting a linear charged polymer inside a nanopore. A first voltage is applied to create an electric field in a first direction. A second voltage is applied to create an electric field in a second direction, and the first direction is opposite to the second direction. When the electric field in the first direction and the electric field in the second direction are applied to a linear charged polymer inside a nanopore, the linear charged polymer is cut at a location with predetermined accuracy.
    Type: Application
    Filed: March 15, 2010
    Publication date: September 15, 2011
    Applicant: International Business Machines Corporation
    Inventors: Binquan Luan, Glenn J. Martyna, Hongbo Peng, Gustavo A. Stolovitsky
  • Publication number: 20110133603
    Abstract: A coupling structure for coupling piezoelectric material generated stresses to an actuated device of an integrated circuit includes a rigid stiffener structure formed around a piezoelectric (PE) material and the actuated device, the actuated device comprising a piezoresistive (PR) material that has an electrical resistance dependent upon an applied pressure thereto; and a soft buffer structure formed around the PE material and PR material, the buffer structure disposed between the PE and PR materials and the stiffener structure, wherein the stiffener structure clamps both the PE and PR materials to a substrate over which the PE and PR materials are formed, and wherein the soft buffer structure permits the PE material freedom to move relative to the PR material, thereby coupling stress generated by an applied voltage to the PE material to the PR material so as change the electrical resistance of the PR material.
    Type: Application
    Filed: December 7, 2009
    Publication date: June 9, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Lia Krusin-Elbaum, Glenn J. Martyna, Xiao Hu Liu, Dennis M. Newns, Kuan-Neng Chen
  • Publication number: 20100328984
    Abstract: A piezo-effect transistor (PET) device includes a piezoelectric (PE) material disposed between first and second electrodes; and a piezoresistive (PR) material disposed between the second electrode and a third electrode, wherein the first electrode comprises a gate terminal, the second electrode comprises a common terminal, and the third electrode comprises an output terminal such that an electrical resistance of the PR material is dependent upon an applied voltage across the PE material by way of an applied pressure to the PR material by the PE material.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Lia Krusin-Elbaum, Glenn J. Martyna, Xiao Hu Liu, Dennis M. Newns
  • Patent number: 7848135
    Abstract: A piezoelectrically programmed, non-volatile memory cell structure includes a programmable piezo-resistive hysteretic material (PRHM) that is capable of being interconverted between a low resistance state and high resistance state through applied pressure cycling thereto; a piezoelectric material mechanically coupled to the PRHM such that an applied voltage across the piezoelectric material results in one of a tensile or compressive stress applied to the PRHM, depending upon the polarity of the applied voltage; and one or more electrodes in electrical communication with the PRHM, wherein the one or more electrodes are configured to provide a write programming current path through the piezoelectric material and a read current path through the PRHM.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: December 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Bruce G. Elmegreen, Lia Krusin-Elbaum, Xiao Hu Liu, Glenn J. Martyna, Martin Muser, Dennis M. Newns
  • Publication number: 20100073997
    Abstract: A piezoelectrically programmed, non-volatile memory cell structure includes a programmable piezo-resistive hysteretic material (PRHM) that is capable of being interconverted between a low resistance state and high resistance state through applied pressure cycling thereto; a piezoelectric material mechanically coupled to the PHRM such that an applied voltage across the piezoelectric material results in one of a tensile or compressive stress applied to the PRHM, depending upon the polarity of the applied voltage; and one or more electrodes in electrical communication with the PRHM, wherein the one or more electrodes are configured to provide a write programming current path through the piezoelectric material and a read current path through the PRHM.
    Type: Application
    Filed: September 19, 2008
    Publication date: March 25, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Lia Krusin-Elbaum, Xiao Hu Liu, Glenn J. Martyna, Martin Muser, Dennis M. Newns
  • Patent number: 6984846
    Abstract: A qubit (quantum bit) circuit includes a superconducting main loop that is electrically-completed by a serially-interconnected superconducting subloop. The subloop includes two Josephson junctions. A first coil provides a first flux that couples with the main loop but not with the subloop. A second coil provides a second flux that couples with the subloop but not with the main loop.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: January 10, 2006
    Assignee: International Business Machines Corporation
    Inventors: Dennis M. Newns, David P. DiVincenzo, Roger H. Koch, Glenn J. Martyna, Jim Rozen, Chang Chyi Tsuei