Patents by Inventor Gregory A. George

Gregory A. George has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9281229
    Abstract: A method for debonding two temporary bonded wafers, includes providing a debonder comprising a top chuck assembly, a bottom chuck assembly, a static gantry supporting the top chuck assembly, an X-axis carriage drive supporting the bottom chuck assembly and an X-axis drive control configured to drive horizontally the X-axis carriage drive and the bottom chuck assembly from a loading zone to a process zone under the top chuck assembly and from the process zone back to the loading zone. Next, loading a wafer pair comprising a carrier wafer bonded to a device wafer via an adhesive layer upon the bottom chuck assembly at the loading zone oriented so that the unbonded surface of the device wafer is in contact with the bottom assembly. Next, driving the X-axis carriage drive and the bottom chuck assembly to the process zone under the top chuck assembly. Next, placing the unbonded surface of the carrier wafer in contact with the top chuck assembly and holding the carrier wafer by the top chuck assembly.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: March 8, 2016
    Assignee: SUSS MicroTec Lithography GmbH
    Inventors: Gregory George, Hale Johnson, Patrick Gorun, Emmett Hughlett, James Hermanowski, Matthew Stiles
  • Publication number: 20160055205
    Abstract: A computer system processes a plurality of unrelated database tables to create a join graph where each node in the join graph represents a table. The nodes in the join graph are connected by weighted, directed edges, where each directed edge represents a join from a first column in a first table to a second column in a second table and where the weight of the directed edge represents a predicted level of success in performing the join. The edge weights can be based on a likelihood of finding a value from the first column in the second column. A user selects a subset of the tables, and the system creates a join tree with recommended joins between the tables selected by the user. The recommended joins are used to create a structured query language statement which is executed to return a result to the user.
    Type: Application
    Filed: August 24, 2015
    Publication date: February 25, 2016
    Inventors: Young Jonathan, John O'Neil, William K. Johnson, III, Martin Serrano, Gregory George, Udayan Das
  • Publication number: 20160055212
    Abstract: A computer system processes arbitrary data sets to identify fields of data that can be the basis of a join operation. Each data set has a plurality of entries, with each entry having a plurality of fields. For each pair of data sets, the computer system compares the values of fields in a first data set in the pair of data sets to the values of fields in a second data set in the pair of data sets, to identify fields having substantially similar sets of values. Given pairs of fields that have similar sets of values, the computer system measures entropy with respect to an intersection of the sets of values of the pair of fields. The computer system can recommend fields for a join operation between any pair of data sets in the plurality of data sets based on such statistical measures.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 25, 2016
    Inventors: Jonathan Young, John O'Neil, William K. Johnson, III, Martin Serrano, Gregory George
  • Patent number: 9159595
    Abstract: An improved wafer carrier device for carrying and holding semiconductor wafers that have a thickness of below 100 micrometers includes a transportable wafer chuck having an enclosed vacuum reservoir and a top surface configured to support a wafer. The top surface has one or more through-openings extending from the top surface to the vacuum reservoir and the wafer is held onto the top surface via vacuum from the vacuum reservoir drawn through the through-openings.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: October 13, 2015
    Assignee: SUSS MicroTec Lithography GmbH
    Inventors: Daniel T. Hurley, Gregory George
  • Publication number: 20150251396
    Abstract: An apparatus for temporary bonding first and second wafers includes, a first coating chamber configured to apply a first adhesive layer upon a first surface of a first wafer; a second coating chamber configured to apply a second adhesive layer upon a first surface of a second wafer; a curing chamber configured to cure the first adhesive layer of the first wafer; a bonder module comprising an upper chuck assembly and a lower chuck assembly arranged below and opposite the upper chuck assembly. The upper chuck assembly is configured to hold the first wafer so that its first surface with the cured first adhesive layer faces down. The lower chuck assembly is configured to hold the second wafer so that the second adhesive layer faces up and is opposite to the cured first adhesive layer. The lower chuck assembly is configured to move upwards and thereby to bring the second adhesive layer in contact with the cured first adhesive layer.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 10, 2015
    Applicant: SUSS MICROTEC LITHOGRAPHY GMBH
    Inventors: GREGORY GEORGE, Stefan Lutter
  • Publication number: 20150206783
    Abstract: A system for mechanically holding a substrate during processing includes a closeable processing chamber and an upper block assembly located inside the processing chamber and configured to hold a wafer via three mechanical holding assemblies. The three mechanical holding assemblies protrude above a cover of the wafer processing chamber and are configured to hold the wafer at an edge of the wafer and to be adjusted from outside of the processing chamber. Two of the mechanical holding assemblies are lockable in position relative to the wafer edge and one of the mechanical holding assemblies is configured to maintain a hold preload on the wafer edge via a preload mechanism.
    Type: Application
    Filed: January 15, 2015
    Publication date: July 23, 2015
    Applicant: SUSS MICROTEC LITHOGRAPHY, GMBH
    Inventors: HALE JOHNSON, GREGORY GEORGE
  • Publication number: 20150190864
    Abstract: Methods and processes are described that form ceramic wear surfaces on the outer surface of a cast part. A mold having a mold cavity is provided. The mold cavity may be washed using a refractory wash to provide for a smoother finish to the surface of the cast part and to maintain mold integrity. An adhesive is applied to predetermined locations in which increased wear during the use of the cast parts is anticipated to occur. Ceramic material may be applied to the predetermined locations by various means. A mask may be used to remove excess material from areas other than the predetermined locations. A molten metal is poured into the mold cavity and allowed to cool to form a cast part with a ceramic wear surface.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Inventors: Tyrus Neil Tenold, Gregory George Tenold, Robert Gordon Tenold, Edward Robert Kaczmarek, Rod Alan Grozdanich
  • Patent number: 9064686
    Abstract: A method for temporary bonding first and second wafers includes, applying a first adhesive layer upon a first surface of a first wafer and then curing the first adhesive layer. Next, applying a second adhesive layer upon a first surface of a second wafer. Next, inserting the first wafer into a bonder module and holding the first wafer by an upper chuck assembly so that its first surface with the cured first adhesive layer faces down. Next, inserting the second wafer into the bonder module and placing the second wafer upon a lower chuck assembly so that the second adhesive layer faces up and is opposite to the first adhesive layer. Next, moving the lower chuck assembly upwards and bringing the second adhesive layer in contact with the cured first adhesive layer, and then curing the second adhesive layer.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: June 23, 2015
    Assignee: SUSS MICROTEC LITHOGRAPHY, GmbH
    Inventors: Gregory George, Stefan Lutter
  • Publication number: 20150166345
    Abstract: An electrode for use in a electrochemical sensor comprises carbon modified with a chemically sensitive redox-active compound, excluding an electrode based on carbon having derivatised thereron two redox-active species wherein at least one of said species is selected from anthraquinone, phenanthrenequinone and N,N?-diphenyl-p-phenylenediamine (DPPD). The invention further provides a pH sensor comprising: a working electrode comprising carbon modified with a chemically sensitive redox active material; and a counter electrode, wherein the ratio of the surface area of the working electrode to the surface area of the counter electrode is from 1:10 to 10:1. Also provided is a pH sensor comprising: a working electrode comprising carbon modified with a chemically sensitive redox active material, and a counter electrode, wherein the area of the working electrode is from 500 ?m2 to 0.1 m2. The uses of these electrodes and sensors are also described.
    Type: Application
    Filed: January 19, 2015
    Publication date: June 18, 2015
    Inventors: Sean P. McCormack, Richard G. Compton, Gregory George Wildgoose, Nathan Scott Lawrence
  • Publication number: 20150158082
    Abstract: An apparatus and methods for controlling the location and distribution of loose ceramic particles in a ceramic metal composite component formed via casting. A retaining structure that may include loose ceramic particles is placed in a casting mold at a desired location for ceramic particles in the composite component prior to pouring molten metal into the casting mold. Alternatively, the loose ceramic particles may be introduced into the mold concurrently with the molten metal.
    Type: Application
    Filed: February 17, 2015
    Publication date: June 11, 2015
    Inventors: Tyrus Neil Tenold, Gregory George Tenold, Robert Gordon Tenold, Edward Robert Kaczmarek, Rod Alan Grozdanich
  • Publication number: 20150101744
    Abstract: Described methods and apparatus provide a controlled perturbation to an adhesive bond between a device wafer and a carrier wafer. The controlled perturbation, which can be mechanical, chemical, thermal, or radiative, facilitates the separation of the two wafers without damaging the device wafer. The controlled perturbation initiates a crack either within the adhesive joining the two wafers, at an interface within the adhesive layer (such as between a release layer and the adhesive), or at a wafer/adhesive interface. The crack can then be propagated using any of the foregoing methods, or combinations thereof, used to initiate the crack.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 16, 2015
    Inventors: Gregory George, Christopher Rosenthal
  • Publication number: 20150083342
    Abstract: A method for debonding two temporary bonded wafers, includes providing a debonder comprising a top chuck assembly, a bottom chuck assembly, a static gantry supporting the top chuck assembly, an X-axis carriage drive supporting the bottom chuck assembly and an X-axis drive control configured to drive horizontally the X-axis carriage drive and the bottom chuck assembly from a loading zone to a process zone under the top chuck assembly and from the process zone back to the loading zone. Next, loading a wafer pair comprising a carrier wafer bonded to a device wafer via an adhesive layer upon the bottom chuck assembly at the loading zone oriented so that the unbonded surface of the device wafer is in contact with the bottom assembly. Next, driving the X-axis carriage drive and the bottom chuck assembly to the process zone under the top chuck assembly. Next, placing the unbonded surface of the carrier wafer in contact with the top chuck assembly and holding the carrier wafer by the top chuck assembly.
    Type: Application
    Filed: December 1, 2014
    Publication date: March 26, 2015
    Applicant: SUSS MICROTEC LITHOGRAPHY, GMBH
    Inventors: GREGORY GEORGE, HALE JOHNSON, PATRICK GORUN, EMMETT HUGHLETT, JAMES HERMANOWSKI, MATTHEW STILES
  • Patent number: 8985185
    Abstract: An apparatus and methods for controlling the location and distribution of loose ceramic particles in a ceramic metal composite component formed via casting. A retaining structure that may include loose ceramic particles is placed in a casting mold at a desired location for ceramic particles in the composite component prior to pouring molten metal into the casting mold. Alternatively, the loose ceramic particles may be introduced into the mold concurrently with the molten metal.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: March 24, 2015
    Assignee: Spokane Industries
    Inventors: Tyrus Neil Tenold, Gregory George Tenold, Robert Gordon Tenold, Edward Robert Kaczmarek, Rod Alan Grozdanich
  • Patent number: 8961754
    Abstract: An electrode for use in a electrochemical sensor comprises carbon modified with a chemically sensitive redox-active compound, excluding an electrode based on carbon having derivatized thereron two redox-active species wherein at least one of said species is selected from anthraquinone, phenanthrenequinone and N,N?-diphenyl-p-phenylenediamine (DPPD). The invention further provides a pH sensor comprising: a working electrode comprising carbon modified with a chemically sensitive redox active material; and a counter electrode, wherein the ratio of the surface area of the working electrode to the surface area of the counter electrode is from 1:10 to 10:1. Also provided is a pH sensor comprising: a working electrode comprising carbon modified with a chemically sensitive redox active material, and a counter electrode, wherein the area of the working electrode is from 500 ?m2 to 0.1 m2. The uses of these electrodes and sensors are also described.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: February 24, 2015
    Assignee: Isis Innovation Ltd
    Inventors: Sean P. McCormack, Richard G. Compton, Gregory George Wildgoose, Nathan Scott Lawrence
  • Patent number: 8950459
    Abstract: Described methods and apparatus provide a controlled perturbation to an adhesive bond between a device wafer and a carrier wafer. The controlled perturbation, which can be mechanical, chemical, thermal, or radiative, facilitates the separation of the two wafers without damaging the device wafer. The controlled perturbation initiates a crack either within the adhesive joining the two wafers, at an interface within the adhesive layer (such as between a release layer and the adhesive), or at a wafer/adhesive interface. The crack can then be propagated using any of the foregoing methods, or combinations thereof, used to initiate the crack.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: February 10, 2015
    Assignee: SUSS MicroTec Lithography GmbH
    Inventors: Gregory George, Christopher Rosenthal
  • Patent number: 8919412
    Abstract: A debonder apparatus for debonding two via an adhesive layer temporary bonded wafers includes a top chuck assembly, a bottom chuck assembly, a static gantry supporting the top chuck assembly, an X-axis carriage drive supporting the bottom chuck assembly, and an X-axis drive control. The top chuck assembly includes a heater and a wafer holder. The X-axis drive control drives horizontally the bottom chuck assembly from a loading zone to a process zone under the top chuck assembly and from the process zone back to the loading zone. A wafer pair comprising a carrier wafer bonded to a device wafer via an adhesive layer is placed upon the bottom chuck assembly at the loading zone oriented so that the unbonded surface of the device wafer is in contact with the bottom assembly and is carried by the X-axis carriage drive to the process zone under the top chuck assembly and the unbonded surface of the carrier wafer is placed in contact with the top chuck assembly.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: December 30, 2014
    Assignee: Suss Microtec Lithography, GmbH
    Inventors: Gregory George, Hale Johnson, Patrick Gorun, Emmett Hughlett, James Hermanowski, Matthew Stiles
  • Publication number: 20140319786
    Abstract: A device for locating and engaging a notch on the perimeter of a circular wafer includes a notch locating component and a first plate. The notch locating component is configured to move linearly along a first axis and includes a front elongated component extending along a second axis perpendicular to the first axis and having a front surface, a back surface opposite to the front surface and a first protrusion extending from the front surface of the elongated component. The first protrusion has a shape complementing the shape of a notch formed on the perimeter of a circular wafer. As the notch locating component is driven toward the perimeter of the circular wafer along the first axis, a distance between the back surface of the elongated component and a front surface of the first plate is measured and the value of the measured distance is used to determine engagement of the first protrusion with the notch.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Applicant: SUSS MICROTEC LITHOGRAPHY, GmbH
    Inventors: HALE JOHNSON, GREGORY GEORGE, MICHAEL BRENNEN
  • Publication number: 20140318683
    Abstract: A wafer bonder apparatus, includes a lower chuck, an upper chuck, a process chamber and three adjustment mechanisms. The three adjustment mechanisms are arranged around a top lid spaced apart from each other and are located outside of the process chamber. Each adjustment mechanism includes a component for sensing contact to the upper chuck, a component for adjusting the pre-load force of the upper chuck, and a component for leveling the upper chuck.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: HALE JOHNSON, GREGORY GEORGE, MICHAEL BRENNEN
  • Patent number: 8764026
    Abstract: A device for centering circular wafers includes a support chuck for supporting a circular wafer to be centered upon its top surface, left, right and middle centering linkage rods and a cam plate synchronizing the rectilinear motion of the left, right and middle centering linkage rods. The left centering linkage rod includes a first rotating arm at a first end and rectilinear motion of the left centering linkage rod translates into rotational motion of the first rotating arm. The right centering linkage rod comprises a second rotating arm at a first end, and rectilinear motion of the right centering linkage rod translates into rotational motion of the second rotating arm. The first and second rotating arms are rotatable around an axis perpendicular to the top surface of the support chuck and comprise a curved edge surface configured to roll against the curved edge of the circular wafer. The middle centering linkage rod includes a third alignment arm at a first end.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: July 1, 2014
    Assignee: Suss Microtec Lithography, GmbH
    Inventors: Gregory George, Hale Johnson, Dennis Patricio
  • Publication number: 20140152373
    Abstract: Power modules with reduced parasitic inductances are provided. A power module includes a first substrate including a first electrically-conductive layer and a second substrate including a second electrically-conductive layer. These substrates may be stacked on each other. A scalable network of power switches may be arranged on the substrates. Power bars may be connectable to the electrically-conductive layers through electromechanical interfaces at selectable interface locations. The locations and/or type of interface may be selectable based on the arrangement of the switches. The first and second electrically-conductive layers may be disposed on mutually opposed surfaces of a dielectric layer having a thickness chosen to effect a level of coupling between respective source and return current paths provided by the electrically-conductive layers.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 5, 2014
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Gregory George Romas, JR., David L. Hoelscher, Thomas Eugene Byrd