Patents by Inventor Gregory M. Chrysler

Gregory M. Chrysler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7851905
    Abstract: A microelectronic package comprises a substrate (110, 310), a die (320) supported by the substrate, an interconnect feature (130, 230, 330) connecting the die and the substrate to each other, and a thermoelectric cooler (140, 170, 240, 340) adjacent to the interconnect feature.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: December 14, 2010
    Assignee: Intel Corporation
    Inventors: Gregory M. Chrysler, Ravi V. Mahajan, Chia-Pin Chiu
  • Patent number: 7825503
    Abstract: An embodiment of the present invention is a technique to fabricate a cover assembly. A cover has a base plate and sidewalls attached to perimeter of the base plate. The sidewalls have a height. A plurality of devices is attached to underside of the base plate. The devices have length corresponding to the height such that the devices are sealed within the cover when the cover is attached to a surface.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: November 2, 2010
    Assignee: Intel Corporation
    Inventors: Gregory M. Chrysler, Tony A. Opheim
  • Patent number: 7795711
    Abstract: An apparatus and associated method to provide localized cooling to a microelectronic device are generally described. In this regard, according to one example embodiment, a cooling apparatus comprising a heat spreader and one or more thermoelectric cooler(s) thermally coupled to the heat spreader provides cooling to one or more hot spot(s) of a microelectronic device, the one or more thermoelectric cooler(s) having a single heat exchanging element of a single material.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: September 14, 2010
    Assignee: Intel Corporation
    Inventors: Ioan Sauciuc, Gregory M. Chrysler
  • Patent number: 7779638
    Abstract: Apparatuses and associated methods and systems to provide localized cooling to a microelectronic device are generally described. In this regard, according to one example embodiment, a microelectronic cooling apparatus comprising a microelectronic device thermally coupled to one or more thermally conductive pin(s) provides cooling to one or more hot spot(s) of the microelectronic device.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: August 24, 2010
    Assignee: Intel Corporation
    Inventors: Ioan Sauciuc, Gregory M. Chrysler
  • Patent number: 7713839
    Abstract: Electronic assemblies and methods for forming assemblies including a diamond substrate are described. One embodiment includes providing a diamond support and forming a porous layer of SiO2 on the diamond support. A diamond layer is formed by chemical vapor deposition on the porous layer so that the porous layer is between the diamond support and the diamond layer. A polycrystalline silicon layer is formed on the diamond layer. The polycrystalline silicon layer is polished to form a planarized surface. A semiconductor layer is coupled to the polysilicon layer. After coupling the semiconductor layer to the polysilicon layer, the diamond support is detached from the diamond layer by breaking the porous layer. The semiconductor layer on the diamond layer substrate is then further processed to form a semiconductor device.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: May 11, 2010
    Assignee: Intel Corporation
    Inventors: Chuan Hu, Gregory M. Chrysler, Daoqiang Lu
  • Publication number: 20090310300
    Abstract: A cabinet adapted with a cooling system is described. Embodiments include electronics cabinets which house electronic equipment. A flow of air is set up in the interior of the cabinet by drawing in ambient air. The incoming air is cooled by an evaporator component of a cooling system. The cooled air cools the electronics and in the process becomes heated air. The heated air serves to cool a condenser component of the cooling system, thereby further heating the heated air. The heated air is then exhausted from the cabinet.
    Type: Application
    Filed: June 11, 2008
    Publication date: December 17, 2009
    Applicant: Minebea Co., Ltd.
    Inventor: Gregory M. Chrysler
  • Patent number: 7633753
    Abstract: In some embodiments, piezoelectric air jet augmented cooling for electronic devices is presented. In this regard, an apparatus is introduced having a plurality of more than about one hundred lead-free piezoelectric layers and electrodes stacked on top of each other and formed around a central opening, and a diaphragm coupled to the piezoelectric layers and substantially covering the central opening to vibrate and blow air when an operating voltage is applied to the electrodes. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: December 15, 2009
    Assignee: Intel Corporation
    Inventors: Ioan Sauciuc, Gregory M. Chrysler, Hakan Erturk
  • Publication number: 20090289353
    Abstract: An embodiment of the present invention is a technique to fabricate a cover assembly. A cover has a base plate and sidewalls attached to perimeter of the base plate. The sidewalls have a height. A plurality of devices is attached to underside of the base plate. The devices have length corresponding to the height such that the devices are sealed within the cover when the cover is attached to a surface.
    Type: Application
    Filed: July 27, 2009
    Publication date: November 26, 2009
    Applicant: INTEL CORPORATION
    Inventors: Gregory M. Chrysler, Tony A. Opheim
  • Patent number: 7622327
    Abstract: An embodiment of the present invention is a technique to fabricate a cover assembly. A cover has a base plate and sidewalls attached to perimeter of the base plate. The sidewalls have a height. A plurality of devices is attached to underside of the base plate. The devices have length corresponding to the height such that the devices are sealed within the cover when the cover is attached to a surface.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: November 24, 2009
    Assignee: Intel Corporation
    Inventors: Gregory M. Chrysler, Tony A. Opheim
  • Patent number: 7589417
    Abstract: A microelectronic assembly is provided, having thermoelectric elements formed on a die so as to pump heat away from the die when current flows through the thermoelectric elements. In one embodiment, the thermoelectric elements are integrated between conductive interconnection elements on an active side of the die. In another embodiment, the thermoelectric elements are on a backside of the die and electrically connected to a carrier substrate on a front side of the die. In a further embodiment, the thermoelectric elements are formed on a secondary substrate and transferred to the die.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: September 15, 2009
    Assignee: Intel Corporation
    Inventors: Shriram Ramanathan, Gregory M. Chrysler, Steven N. Towle, Anna M. George, legal representative
  • Publication number: 20090218681
    Abstract: A carbon nanotube (CNT) array is patterned on a substrate. The substrate can be a microelectronic die or a heat sink for a die. The patterned CNT array is patterned by using a patterned catalyst on the substrate to form the CNT array by growing. The patterned CNT array can also be patterned by using a patterned mask on the substrate to form the CNT array by growing. A computing system that uses the CNT array for heat transfer from the die is also used.
    Type: Application
    Filed: May 8, 2009
    Publication date: September 3, 2009
    Inventors: Gregory M. Chrysler, Thomes S. Dory, James G. Maveety, Edward Prack, Unnikrishnan Vadakkanmaruveedu
  • Publication number: 20090174999
    Abstract: In some embodiments, piezoelectric air jet augmented cooling for electronic devices is presented. In this regard, an apparatus is introduced having a plurality of more than about one hundred lead-free piezoelectric layers and electrodes stacked on top of each other and formed around a central opening, and a diaphragm coupled to the piezoelectric layers and substantially covering the central opening to vibrate and blow air when an operating voltage is applied to the electrodes. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: September 27, 2007
    Publication date: July 9, 2009
    Inventors: Ioan Sauciuc, Gregory M. Chrysler, Hakan Erturk
  • Patent number: 7557438
    Abstract: A stacked die package includes a substrate (210, 310), a first die (220, 320) above the substrate, a spacer (230, 330) above the first die, a second die (240, 340) above the spacer, and a mold compound (250, 370) disposed around at least a portion of the first die, the spacer, and the second die. The spacer includes a heat transfer conduit (231, 331, 333, 351, 353) representing a path of lower overall thermal resistance than that offered by the mold compound itself. The heat transfer path created by the heat transfer conduit may result in better thermal performance, higher power dissipation rates, and/or lower operating temperatures for the stacked die package.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: July 7, 2009
    Assignee: Intel Corporation
    Inventors: Gregory M. Chrysler, Rajashree Baskaran
  • Publication number: 20090166890
    Abstract: A flip-chip package is described. The package has an integrated circuit (IC) die positioned within an epoxy layer on the top surface of a package substrate. Cooling of the IC die is facilitated by a heat spreader having two contact surfaces separated by a pedestal, the first contact surface for attachment to the epoxy layer the second contact surface for thermal attachment to the exposed backside surface of the IC die, the pedestal thickness is selected so as to create a gap between the first contact surface and the epoxy layer.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Inventors: Gregory M. Chrysler, Ashish Gupta
  • Patent number: 7550901
    Abstract: A piezoelectric fan includes a piezoelectric actuator patch (110, 210, 310) and a blade (120, 220, 320) attached to the piezoelectric actuator patch. The blade has a hole (121, 127, 221) in it, and a door (122, 128, 222) is adjacent to the hole and attached to the blade (as with a hinge (123, 129, 223)) such that the door is capable of opening and closing.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: June 23, 2009
    Assignee: Intel Corporation
    Inventors: Gregory M. Chrysler, Ioan Sauciuc
  • Publication number: 20090152713
    Abstract: Embodiments of a thermal interface material layer comprised of an oil or a wax are disclosed. The thermal interface material may be used to thermally couple an integrated circuit die to a thermal component, such as a heat spreader. Other embodiments are described and claimed.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 18, 2009
    Inventors: Ioan Sauciuc, Gregory M. Chrysler
  • Patent number: 7545030
    Abstract: A carbon nanotube (CNT) array is patterned on a substrate. The substrate can be a microelectronic die or a heat sink for a die. The patterned CNT array is patterned by using a patterned catalyst on the substrate to form the CNT array by growing. The patterned CNT array can also be patterned by using a patterned mask on the substrate to form the CNT array by growing. A computing system that uses the CNT array for heat transfer from the die is also used.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: June 9, 2009
    Assignee: Intel Corporation
    Inventors: Gregory M. Chrysler, Thomas S. Dory, James G. Maveety, Edward Prack, Unnikrishnan Vadakkanmaruveedu
  • Patent number: 7537954
    Abstract: A microelectronic assembly is provided, having thermoelectric elements formed on a die so as to pump heat away from the die when current flows through the thermoelectric elements. In one embodiment, the thermoelectric elements are integrated between conductive interconnection elements on an active side of the die. In another embodiment, the thermoelectric elements are on a backside of the die and electrically connected to a carrier substrate on a front side of the die. In a further embodiment, the thermoelectric elements are formed on a secondary substrate and transferred to the die.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: May 26, 2009
    Assignee: Intel Corporation
    Inventors: Shriram Ramanathan, Sarah E. Kim, R. Scott List, Gregory M. Chrysler
  • Patent number: 7538476
    Abstract: A multi-layer piezoelectric actuator with conductive polymer electrodes is described. The piezoelectric actuator comprises a stack of alternating conductive electrode layers and piezoelectric layers. The conductive electrode layers are comprised of a polymeric electrically conductive material. A device for cooling by forced-air convection may comprise the piezoelectric actuator, a fan blade and an alternating current supply. The piezoelectric actuator coupled with the fan blade and the alternating current supply, which is provided for vibrating the fan blade. A method of cooling by forced-air convection comprises supplying an alternating current to the piezoelectric actuator, wherein the alternating current has a frequency and causes the fan blade to vibrate with the same frequency.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: May 26, 2009
    Assignee: Intel Corporation
    Inventors: Gregory M. Chrysler, Ioan Sauciuc
  • Publication number: 20090129022
    Abstract: A method and arrangement for dissipating heat from a localized area within a semiconductor die is presented. A semiconductor die is constructed and arranged to have at least one conduit portion therein. At least a portion of the conduit portion is proximate to the localized area. The conduit portion is at least partially filled with a heat-dissipating material. The conduit portion absorbs heat from the localized area and dissipates at least a portion of the heat away from the localized area. As such, thermal stress on the die is reduced, and total heat from the die is more readily dissipated.
    Type: Application
    Filed: January 8, 2009
    Publication date: May 21, 2009
    Applicant: INTEL CORPORATION
    Inventors: Gregory M. Chrysler, James G. Maveety