Patents by Inventor Grigory Simin

Grigory Simin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9673285
    Abstract: A device including one or more low-conducting layers is provided. A low-conducting layer can be located below the channel and one or more attributes of the low-conducting layer can be configured based on a minimum target operating frequency of the device and a charge-discharge time of a trapped charge targeted for removal by the low-conducting layer or a maximum interfering frequency targeted for suppression using the low-conducting layer. For example, a product of the lateral resistance and a capacitance between the low-conducting layer and the channel can be configured to be larger than an inverse of the minimum target operating frequency and the product can be smaller than at least one of: the charge-discharge time or an inverse of the maximum interfering frequency.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: June 6, 2017
    Assignee: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 9660038
    Abstract: A lateral semiconductor device and/or design including a space-charge generating layer and an electrode or a set of electrodes located on an opposite side of a device channel as contacts to the device channel is provided. The space-charge generating layer is configured to form a space-charge region to at least partially deplete the device channel in response to an operating voltage being applied to the contacts to the device channel.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: May 23, 2017
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Mikhail Gaevski, Michael Shur
  • Patent number: 9660043
    Abstract: A perforating ohmic contact to a semiconductor layer in a semiconductor structure is provided. The perforating ohmic contact can include a set of perforating elements, which can include a set of metal protrusions laterally penetrating the semiconductor layer(s). The perforating elements can be separated from one another by a characteristic length scale selected based on a sheet resistance of the semiconductor layer and a contact resistance per unit length of a metal of the perforating ohmic contact contacting the semiconductor layer. The structure can be annealed using a set of conditions configured to ensure formation of the set of metal protrusions.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: May 23, 2017
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Mikhail Gaevski, Grigory Simin, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 9647076
    Abstract: A circuit including a semiconductor device having a set of space-charge control electrodes is provided. The set of space-charge control electrodes is located between a first terminal, such as a gate or a cathode, and a second terminal, such as a drain or an anode, of the device. The circuit includes a biasing network, which supplies an individual bias voltage to each of the set of space-charge control electrodes. The bias voltage for each space-charge control electrode can be: selected based on the bias voltages of each of the terminals and a location of the space-charge control electrode relative to the terminals and/or configured to deplete a region of the channel under the corresponding space-charge control electrode at an operating voltage applied to the second terminal.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: May 9, 2017
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20170117437
    Abstract: An optoelectronic device configured for improved light extraction through a region of the device other than the substrate is described. A group III nitride semiconductor layer of a first polarity is located on the substrate and an active region can be located on the group III nitride semiconductor layer. A group III nitride semiconductor layer of a second polarity, different from the first polarity, can located adjacent to the active region. A first contact can directly contact the group III nitride semiconductor layer of the first polarity and a second contact can directly contact the group III nitride semiconductor layer of the second polarity. Each of the first and second contacts can include a plurality of openings extending entirely there through and the first and second contacts can form a photonic crystal structure. Some or all of the group III nitride semiconductor layers can be located in nanostructures.
    Type: Application
    Filed: October 23, 2016
    Publication date: April 27, 2017
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Grigory Simin, Alexander Dobrinsky
  • Publication number: 20170117438
    Abstract: A heterostructure for use in an electronic or optoelectronic device is provided. The heterostructure includes one or more semiconductor layers containing columnar nanostructures (e.g., nanowires). The nanowire semiconductor layer can include sub-layers of varying composition, at least one of which is an active layer that can include quantum wells and barriers. A heterostructure can include n-type and p-type semiconductor contact layers adjacent to the nanowire semiconductor layer containing the active layer.
    Type: Application
    Filed: October 23, 2016
    Publication date: April 27, 2017
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Grigory Simin, Alexander Dobrinsky
  • Publication number: 20170104135
    Abstract: A mounting structure for mounting a set of optoelectronic devices is provided. A mounting structure for a set of optoelectronic devices can include: a body formed of an insulating material; and a heatsink element embedded within the body. A heatsink can be located adjacent to the mounting structure. The set of optoelectronic devices can be mounted on a side of the mounting structure opposite of the heatsink.
    Type: Application
    Filed: October 12, 2016
    Publication date: April 13, 2017
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Grigory Simin, Alexander Dobrinsky
  • Patent number: 9601611
    Abstract: A lateral/vertical device is provided. The device includes a device structure including a device channel having a lateral portion and a vertical portion. The lateral portion of the device channel can be located adjacent to a first surface of the device structure, and one or more contacts and/or a gate can be formed on the first surface. The device structure also includes a set of insulating layers located in the device structure between the lateral portion of the device channel and a second surface of the device structure opposite the first surface. An opening in the set of insulating layers defines a transition region between the lateral portion of the device channel and a vertical portion of the device channel. A contact to the vertical portion of the device channel can be located on the second surface.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: March 21, 2017
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Mikhail Gaevski, Michael Shur, Remigijus Gaska
  • Publication number: 20170077278
    Abstract: A semiconductor device including a device channel with a gate-drain region having a carrier concentration that varies laterally along a direction from the gate contact to the drain contact is provided. Lateral variation of the carrier concentration can be implemented by laterally varying one or more attributes of one or more layers located in the gate-drain region of the device.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 16, 2017
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Alexander Dobrinsky
  • Publication number: 20170079102
    Abstract: A solid-state light source (SSLS) with light modulation control is described. A SSLS device can include a main p-n junction region configured for recombination of electron-hole pairs for light emission. A supplementary p-n junction region is proximate the main p-n junction region to supplement the recombination of electron-hole pairs, wherein the supplementary p-n junction region has a smaller electron-hole life time than the electron-hole life time of the main p-n junction region. The main p-n junction region and the supplementary p-n junction region operate cooperatively in a light emission state and a light turn-off-state. In one embodiment, the recombination of electron-hole pairs occurs in the main p-n junction region during a light emission state, and the recombination of electron-hole pairs occurs in the supplementary p-n junction region light during the light turn off-state.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 16, 2017
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur
  • Publication number: 20170077085
    Abstract: A solid-state light source (SSLS) with an integrated short-circuit protection approach is described. A device can include a SSLS having an n-type semiconductor layer, a p-type semiconductor layer and a light generating structure formed there between. A field-effect transistor (FET) can be monolithically connected in series with the SSLS. The FET can have a saturation current that is greater than the normal operating current of the SSLS and less than a predetermined protection current threshold specified to protect the SSLS and the FET.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 16, 2017
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur
  • Publication number: 20170047438
    Abstract: A normally-off transistor with a high operating voltage is provided. The transistor can include a barrier above the channel and an additional barrier layer located below the channel. A source electrode and a drain electrode are connected to the channel and a gate electrode is connected to the additional barrier layer located below the channel. The bandgap for each of the barrier layers can be larger than the bandgap for the channel. A polarization charge induced at the interface between the additional barrier layer below the channel and the channel depletes the channel. A voltage can be applied to the bottom barrier to induce free carriers into the channel and turn the channel on.
    Type: Application
    Filed: August 11, 2016
    Publication date: February 16, 2017
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur
  • Publication number: 20160359031
    Abstract: A switch includes an input contact and an output contact to a conducting channel. At least one of the input and output contacts is capacitively coupled to the conducting channel. A control contact is located outside of a region between the input and output contacts, and can be used to adjust the switch between on and off operating states. The switch can be implemented as a radio frequency switch in a circuit.
    Type: Application
    Filed: April 25, 2016
    Publication date: December 8, 2016
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20160322466
    Abstract: A lateral semiconductor device and/or design including a space-charge generating layer and an electrode or a set of electrodes located on an opposite side of a device channel as contacts to the device channel is provided. The space-charge generating layer is configured to form a space-charge region to at least partially deplete the device channel in response to an operating voltage being applied to the contacts to the device channel.
    Type: Application
    Filed: July 12, 2016
    Publication date: November 3, 2016
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Mikhail Gaevski, Michael Shur, Remigijus Gaska
  • Patent number: 9467105
    Abstract: A device including a plurality of perforations to a semiconductor channel is provided. The device includes a semiconductor structure forming the semiconductor channel. Additionally, the device includes a source contact, a drain contact, and a gate contact to the semiconductor channel. The plurality of perforations can be located in the semiconductor structure below the gate contact. Furthermore, a perforation in the plurality of perforations can extend into the semiconductor structure beyond a location of the semiconductor channel.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: October 11, 2016
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Mikhail Gaevski, Michael Shur, Remigijus Gaska
  • Publication number: 20160225863
    Abstract: A circuit including a semiconductor device having a set of space-charge control electrodes is provided. The set of space-charge control electrodes is located between a first terminal, such as a gate or a cathode, and a second terminal, such as a drain or an anode, of the device. The circuit includes a biasing network, which supplies an individual bias voltage to each of the set of space-charge control electrodes. The bias voltage for each space-charge control electrode can be: selected based on the bias voltages of each of the terminals and a location of the space-charge control electrode relative to the terminals and/or configured to deplete a region of the channel under the corresponding space-charge control electrode at an operating voltage applied to the second terminal.
    Type: Application
    Filed: April 12, 2016
    Publication date: August 4, 2016
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 9391189
    Abstract: A lateral semiconductor device and/or design including a space-charge generating layer and a set of electrodes located on an opposite side of a device channel as contacts to the device channel is provided. The space-charge generating layer is configured to form a space-charge region to at least partially deplete the device channel in response to an operating voltage being applied to the contacts to the device channel.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: July 12, 2016
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Mikhail Gaevski, Michael Shur, Remigijus Gaska
  • Publication number: 20160181410
    Abstract: A semiconductor device including a low conducting field-controlling element is provided. The device can include a semiconductor including an active region (e.g., a channel), and a set of contacts to the active region. The field-controlling element can be coupled to one or more of the contacts in the set of contacts. The field-controlling element can be formed of a low conducting layer of material and have a lateral resistance that is both larger than an inverse of a minimal operating frequency of the device and smaller than an inverse of a maximum control frequency of the device.
    Type: Application
    Filed: February 25, 2016
    Publication date: June 23, 2016
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20160172544
    Abstract: A device including a first semiconductor layer and a contact to the first semiconductor layer is disclosed. An interface between the first semiconductor layer and the contact includes a first roughness profile having a characteristic height and a characteristic width. The characteristic height can correspond to an average vertical distance between crests and adjacent valleys in the first roughness profile. The characteristic width can correspond to an average lateral distance between the crests and adjacent valleys in the first roughness profile.
    Type: Application
    Filed: February 12, 2016
    Publication date: June 16, 2016
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Remigijus Gaska, Maxim S. Shatalov, Alexander Dobrinsky, Jinwei Yang, Michael Shur, Grigory Simin
  • Patent number: 9349848
    Abstract: A switch includes an input contact and an output contact to a conducting channel. At least one of the input and output contacts is capacitively coupled to the conducting channel. A control contact is located outside of a region between the input and output contacts, and can be used to adjust the switch between on and off operating states. The switch can be implemented as a radio frequency switch in a circuit.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: May 24, 2016
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska