Patents by Inventor Grigory Simin

Grigory Simin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8846473
    Abstract: A solution for designing a semiconductor device, in which two or more attributes of a pair of electrodes are determined to, for example, minimize resistance between the electrodes, is provided. Each electrode can include a current feeding contact from which multiple fingers extend, which are interdigitated with the fingers of the other electrode in an alternating pattern. The attributes can include a target depth of each finger, a target effective width of each pair of adjacent fingers, and/or one or more target attributes of the current feeding contacts. Subsequently, the device and/or a circuit including the device can be fabricated.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: September 30, 2014
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 8692293
    Abstract: Methods of achieving high breakdown voltages in semiconductor devices by suppressing the surface flashover using high dielectric strength insulating encapsulation material are generally described. In one embodiment of the present invention, surface flashover in AlGaN/GaN heterostructure field-effect transistors (HFETs) is suppressed by using high dielectric strength insulating encapsulation material. Surface flashover in as-fabricated III-Nitride based HFETs limits the operating voltages at levels well below the breakdown voltages of GaN.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: April 8, 2014
    Assignee: University of South Carolina
    Inventors: M. Asif Khan, Vinod Adivarahan, Qhalid Fareed, Grigory Simin, Naveen Tipimeni
  • Publication number: 20140091373
    Abstract: A semiconductor device with a breakdown preventing layer is provided. The breakdown preventing layer can be located in a high-voltage surface region of the device. The breakdown preventing layer can include an insulating film with conducting elements embedded therein. The conducting elements can be arranged along a lateral length of the insulating film. The conducting elements can be configured to split a high electric field spike otherwise present in the high-voltage surface region during operation of the device into multiple much smaller spikes.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 3, 2014
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20140077311
    Abstract: A lateral semiconductor device and/or design including a space-charge generating layer and electrode located on an opposite side of a device channel as contacts to the device channel is provided. The space-charge generating layer is configured to form a space-charge region to at least partially deplete the device channel in response to an operating voltage being applied to the contacts to the device channel.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 20, 2014
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Mikhail Gaevski, Michael Shur, Remigijus Gaska
  • Publication number: 20140077265
    Abstract: A switch includes an input contact and an output contact to a conducting channel. At least one of the input and output contacts is capacitively coupled to the conducting channel. A control contact is located outside of a region between the input and output contacts, and can be used to adjust the switch between on and off operating states. The switch can be implemented as a radio frequency switch in a circuit.
    Type: Application
    Filed: November 18, 2013
    Publication date: March 20, 2014
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 8643430
    Abstract: A solution for compensating intermodulation distortion of a component is provided. A circuit element includes multiple connected components. At least two of the connected components comprise current-voltage characteristics of opposite signs (e.g., sublinear and superlinear current-voltage characteristics) such that the current-voltage characteristics of the circuit element produces a level of intermodulation distortion for the circuit element lower than a level of intermodulation distortion for each of the connected components.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: February 4, 2014
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20130320352
    Abstract: A perforating ohmic contact to a semiconductor layer in a semiconductor structure is provided. The perforating ohmic contact can include a set of perforating elements, which can include a set of metal protrusions laterally penetrating the semiconductor layer(s). The perforating elements can be separated from one another by a characteristic length scale selected based on a sheet resistance of the semiconductor layer and a contact resistance per unit length of a metal of the perforating ohmic contact contacting the semiconductor layer. The structure can be annealed using a set of conditions configured to ensure formation of the set of metal protrusions.
    Type: Application
    Filed: June 4, 2013
    Publication date: December 5, 2013
    Inventors: Mikhail Gaevski, Grigory Simin, Maxim S Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 8586997
    Abstract: A semiconductor device including a low conducting field-controlling element is provided. The device can include a semiconductor including an active region, and a set of contacts to the active region. The field-controlling element can be coupled to one or more of the contacts in the set of contacts. The field-controlling element can be formed of a low conducting layer having a sheet resistance between approximately 103 Ohms per square and approximately 107 Ohms per square. During direct current and/or low frequency operation, the field-controlling element can behave similar to a metal electrode. However, during high frequency operation, the field-controlling element can behave similar to an insulator.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: November 19, 2013
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 8587028
    Abstract: A switch includes an input contact and an output contact to a conducting channel. At least one of the input and output contacts is capacitively coupled to the conducting channel. A control contact is located outside of a region between the input and output contacts, and can be used to adjust the switch between on and off operating states. The switch can be implemented as a radio frequency switch in a circuit.
    Type: Grant
    Filed: January 3, 2010
    Date of Patent: November 19, 2013
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 8552562
    Abstract: A profiled contact for a device, such as a high power semiconductor device is provided. The contact is profiled in both a direction substantially parallel to a surface of a semiconductor structure of the device and a direction substantially perpendicular to the surface of the semiconductor structure. The profiling can limit the peak electric field between two electrodes to approximately the same as the average electrical field between the electrodes, as well as limit the electric field perpendicular to the semiconductor structure both within and outside the semiconductor structure.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: October 8, 2013
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 8525226
    Abstract: A field effect transistor having a channel, a gate, and a structure for decreasing a gate-to-channel capacitance of the transistor as an operating frequency of the transistor increases. The structure can comprise, for example, a barrier disposed between the gate and the channel, which has a dielectric permittivity and/or a conductivity that varies with an operating frequency of the transistor. In an embodiment, the barrier comprises a layer of conducting material, such as conducting polymer, conducting semiconductor, conducting semi-metal, amorphous silicon, polycrystalline silicon, and/or the like.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: September 3, 2013
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 8461631
    Abstract: A composite contact for a semiconductor device is provided. The composite contact includes a DC conducting electrode that is attached to a semiconductor layer in the device, and a capacitive electrode that is partially over the DC conducting electrode and extends beyond the DC conducting electrode. The composite contact provides a combined resistive-capacitive coupling to the semiconductor layer. As a result, a contact impedance is reduced when the corresponding semiconductor device is operated at high frequencies.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: June 11, 2013
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 8395392
    Abstract: A set of parameters of an evaluation structure are extracted by applying a radio frequency (RF) signal through a first capacitive contact and a second capacitive contact to the evaluation structure. Measurement data corresponding to an impedance of the evaluation structure is acquired while the RF signal is applied, and the set of parameters are extracted from the measurement data. In an embodiment, multiple pairs of capacitive contacts can be utilized to acquire measurement data. Each pair of capacitive contacts can be separated by a channel having a unique spacing.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: March 12, 2013
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20130056753
    Abstract: A semiconductor device including a low conducting field-controlling element is provided. The device can include a semiconductor including an active region (e.g., a channel), and a set of contacts to the active region. The field-controlling element can be coupled to one or more of the contacts in the set of contacts. The field-controlling element can be formed of a low conducting layer of material and have a lateral resistance that is both larger than an inverse of a minimal operating frequency of the device and smaller than an inverse of a maximum control frequency of the device.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 7, 2013
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 8338871
    Abstract: A group III nitride-based transistor capable of achieving terahertz-range cutoff and maximum frequencies of operation at relatively high drain voltages is provided. In an embodiment, two additional independently biased electrodes are used to control the electric field and space-charge close to the gate edges.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: December 25, 2012
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 8339163
    Abstract: A field effect transistor (FET) including a monolithically integrated gate control circuit element can be included in, for example, a radio frequency switch circuit. For example, the FET can be included as a series and/or shunt FET of a radio frequency coplanar waveguide circuit. The widths of the series and shunt FETs of a switch circuit can be selected to provide a target isolation and/or a target insertion loss for a target operating frequency.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: December 25, 2012
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Alexei Koudymov, Michael Shur, Remigijus Gaska
  • Patent number: 8318562
    Abstract: Methods of achieving high breakdown voltages in semiconductor devices by suppressing the surface flashover using high dielectric strength insulating encapsulation material are generally described. In one embodiment of the present invention, surface flashover in AlGaN/GaN heterostructure field-effect transistors (HFETs) is suppressed by using high dielectric strength insulating encapsulation material. Surface flashover in as-fabricated III-Nitride based HFETs limits the operating voltages at levels well below the breakdown voltages of GaN.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: November 27, 2012
    Assignee: University of South Carolina
    Inventors: M. Asif Khan, Vinod Adivarahan, Qhalid Fareed, Grigory Simin, Naveen Tipirneni
  • Patent number: 8299835
    Abstract: A switch circuit is provided that includes at least one main switching device and at least one shunt switching device. Each main switching device is connected in series with a conductor that carries an RF signal between an input circuit and an output circuit. Each shunt switching device is connected between a controlling terminal of the main switching device and a high frequency ground. The switch circuit can provide substantially improved OFF state isolation over other approaches.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: October 30, 2012
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexei Koudymov, Grigory Simin, Michael Shur, Remis Gaska
  • Publication number: 20120216161
    Abstract: A solution for designing a semiconductor device, in which two or more attributes of a pair of electrodes are determined to, for example, minimize resistance between the electrodes, is provided. Each electrode can include a current feeding contact from which multiple fingers extend, which are interdigitated with the fingers of the other electrode in an alternating pattern. The attributes can include a target depth of each finger, a target effective width of each pair of adjacent fingers, and/or one or more target attributes of the current feeding contacts. Subsequently, the device and/or a circuit including the device can be fabricated.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 23, 2012
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20120205667
    Abstract: A semiconductor device including a low conducting field-controlling element is provided. The device can include a semiconductor including an active region, and a set of contacts to the active region. The field-controlling element can be coupled to one or more of the contacts in the set of contacts. The field-controlling element can be formed of a low conducting layer having a sheet resistance between approximately 103 Ohms per square and approximately 107 Ohms per square. During direct current and/or low frequency operation, the field-controlling element can behave similar to a metal electrode. However, during high frequency operation, the field-controlling element can behave similar to an insulator.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 16, 2012
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska