Patents by Inventor Grigory Simin

Grigory Simin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160111505
    Abstract: A semiconductor device with a breakdown preventing layer is provided. The breakdown preventing layer can be located in a high-voltage surface region of the device. The breakdown preventing layer can include an insulating film or a low conductive film with conducting elements embedded therein. The conducting elements can be arranged along a lateral length of the insulating film or the low conductive film. The conducting elements can vary in at least one of composition, doping, conductivity, size, thickness, shape, and distance from the device channel along a lateral length of the insulating film or the low conductive film, or in a direction that is perpendicular to the lateral length.
    Type: Application
    Filed: December 28, 2015
    Publication date: April 21, 2016
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20160111497
    Abstract: A device having a channel with multiple voltage thresholds is provided. The channel can include a first section located adjacent to a source electrode, which is a normally-off channel and a second section located between the first section and a drain electrode, which is a normally-on channel. The device can include a charge-controlling electrode connected to the source electrode, which extends from the source electrode over at least a portion of the second section of the channel. During operation of the device, a potential difference between the charge-controlling electrode and the channel can control the on/off state of the normally-on section of the channel.
    Type: Application
    Filed: December 30, 2015
    Publication date: April 21, 2016
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 9312347
    Abstract: A circuit including a semiconductor device having a set of space-charge control electrodes is provided. The set of space-charge control electrodes is located between a first terminal, such as a gate or a cathode, and a second terminal, such as a drain or an anode, of the device. The circuit includes a biasing network, which supplies an individual bias voltage to each of the set of space-charge control electrodes. The bias voltage for each space-charge control electrode can be: selected based on the bias voltages of each of the terminals and a location of the space-charge control electrode relative to the terminals and/or configured to deplete a region of the channel under the corresponding space-charge control electrode at an operating voltage applied to the second terminal.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: April 12, 2016
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20160071938
    Abstract: A semiconductor device with a breakdown preventing layer is provided. The breakdown preventing layer can be located in a high-voltage surface region of the device. The breakdown preventing layer can include an insulating film with conducting elements embedded therein. The conducting elements can be arranged along a lateral length of the insulating film. The conducting elements can be configured to split a high electric field spike otherwise present in the high-voltage surface region during operation of the device into multiple much smaller spikes.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 10, 2016
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 9263533
    Abstract: A device having a channel with multiple voltage thresholds is provided. The channel can include a first section located adjacent to a source electrode, which is a normally-off channel and a second section located between the first section and a drain electrode, which is a normally-on channel. The device can include a charge-controlling electrode connected to the source electrode, which extends from the source electrode over at least a portion of the second section of the channel. During operation of the device, a potential difference between the charge-controlling electrode and the channel can control the on/off state of the normally-on section of the channel.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: February 16, 2016
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 9256240
    Abstract: A circuit including a semiconductor device having a set of space-charge control electrodes is provided. The set of space-charge control electrodes is located between a first terminal, such as a gate or a cathode, and a second terminal, such as a drain or an anode, of the device. The circuit includes a biasing network, which supplies an individual bias voltage to each of the set of space-charge control electrodes. The bias voltage for each space-charge control electrode can be: selected based on the bias voltages of each of the terminals and a location of the space-charge control electrode relative to the terminals and/or configured to deplete a region of the channel under the corresponding space-charge control electrode at an operating voltage applied to the second terminal.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: February 9, 2016
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20160035871
    Abstract: A lateral semiconductor device and/or design including a space-charge generating layer and a set of electrodes located on an opposite side of a device channel as contacts to the device channel is provided. The space-charge generating layer is configured to form a space-charge region to at least partially deplete the device channel in response to an operating voltage being applied to the contacts to the device channel.
    Type: Application
    Filed: October 16, 2015
    Publication date: February 4, 2016
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Mikhail Gaevski, Michael Shur, Remigijus Gaska
  • Patent number: 9190510
    Abstract: A semiconductor device with a breakdown preventing layer is provided. The breakdown preventing layer can be located in a high-voltage surface region of the device. The breakdown preventing layer can include an insulating film with conducting elements embedded therein. The conducting elements can be arranged along a lateral length of the insulating film. The conducting elements can be configured to split a high electric field spike otherwise present in the high-voltage surface region during operation of the device into multiple much smaller spikes.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 17, 2015
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 9178025
    Abstract: A solution for designing a semiconductor device, in which two or more attributes of a pair of electrodes are determined to, for example, minimize resistance between the electrodes, is provided. Each electrode can include a current feeding contact from which multiple fingers extend, which are interdigitated with the fingers of the other electrode in an alternating pattern. The attributes can include a target depth of each finger, a target effective width of each pair of adjacent fingers, and/or one or more target attributes of the current feeding contacts. Subsequently, the device and/or a circuit including the device can be fabricated.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: November 3, 2015
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 9166048
    Abstract: A lateral semiconductor device and/or design including a space-charge generating layer and electrode located on an opposite side of a device channel as contacts to the device channel is provided. The space-charge generating layer is configured to form a space-charge region to at least partially deplete the device channel in response to an operating voltage being applied to the contacts to the device channel.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: October 20, 2015
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Mikhail Gaevski, Michael Shur, Remigijus Gaska
  • Publication number: 20150179751
    Abstract: A perforating ohmic contact to a semiconductor layer in a semiconductor structure is provided. The perforating ohmic contact can include a set of perforating elements, which can include a set of metal protrusions laterally penetrating the semiconductor layer(s). The perforating elements can be separated from one another by a characteristic length scale selected based on a sheet resistance of the semiconductor layer and a contact resistance per unit length of a metal of the perforating ohmic contact contacting the semiconductor layer. The structure can be annealed using a set of conditions configured to ensure formation of the set of metal protrusions.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 25, 2015
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Mikhail Gaevski, Grigory Simin, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20150102364
    Abstract: A device including one or more low-conducting layers is provided. A low-conducting layer can be located below the channel and one or more attributes of the low-conducting layer can be configured based on a minimum target operating frequency of the device and a charge-discharge time of a trapped charge targeted for removal by the low-conducting layer or a maximum interfering frequency targeted for suppression using the low-conducting layer. For example, a product of the lateral resistance and a capacitance between the low-conducting layer and the channel can be configured to be larger than an inverse of the minimum target operating frequency and the product can be smaller than at least one of: the charge-discharge time or an inverse of the maximum interfering frequency.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 16, 2015
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20150102388
    Abstract: A circuit including a semiconductor device having a set of space-charge control electrodes is provided. The set of space-charge control electrodes is located between a first terminal, such as a gate or a cathode, and a second terminal, such as a drain or an anode, of the device. The circuit includes a biasing network, which supplies an individual bias voltage to each of the set of space-charge control electrodes. The bias voltage for each space-charge control electrode can be: selected based on the bias voltages of each of the terminals and a location of the space-charge control electrode relative to the terminals and/or configured to deplete a region of the channel under the corresponding space-charge control electrode at an operating voltage applied to the second terminal.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 16, 2015
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 8994035
    Abstract: A device including one or more low-conducting layers is provided. A low-conducting layer can be located below the channel and one or more attributes of the low-conducting layer can be configured based on a minimum target operating frequency of the device and a charge-discharge time of a trapped charge targeted for removal by the low-conducting layer or a maximum interfering frequency targeted for suppression using the low-conducting layer. For example, a product of the lateral resistance and a capacitance between the low-conducting layer and the channel can be configured to be larger than an inverse of the minimum target operating frequency and the product can be smaller than at least one of: the charge-discharge time or an inverse of the maximum interfering frequency.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: March 31, 2015
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 8969198
    Abstract: A perforating ohmic contact to a semiconductor layer in a semiconductor structure is provided. The perforating ohmic contact can include a set of perforating elements, which can include a set of metal protrusions laterally penetrating the semiconductor layer(s). The perforating elements can be separated from one another by a characteristic length scale selected based on a sheet resistance of the semiconductor layer and a contact resistance per unit length of a metal of the perforating ohmic contact contacting the semiconductor layer. The structure can be annealed using a set of conditions configured to ensure formation of the set of metal protrusions.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: March 3, 2015
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Mikhail Gaevski, Grigory Simin, Maxim S Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20150054570
    Abstract: A circuit including a semiconductor device having a set of space-charge control electrodes is provided. The set of space-charge control electrodes is located between a first terminal, such as a gate or a cathode, and a second terminal, such as a drain or an anode, of the device. The circuit includes a biasing network, which supplies an individual bias voltage to each of the set of space-charge control electrodes. The bias voltage for each space-charge control electrode can be: selected based on the bias voltages of each of the terminals and a location of the space-charge control electrode relative to the terminals and/or configured to deplete a region of the channel under the corresponding space-charge control electrode at an operating voltage applied to the second terminal.
    Type: Application
    Filed: October 29, 2014
    Publication date: February 26, 2015
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20150021664
    Abstract: A lateral/vertical device is provided. The device includes a device structure including a device channel having a lateral portion and a vertical portion. The lateral portion of the device channel can be located adjacent to a first surface of the device structure, and one or more contacts and/or a gate can be formed on the first surface. The device structure also includes a set of insulating layers located in the device structure between the lateral portion of the device channel and a second surface of the device structure opposite the first surface. An opening in the set of insulating layers defines a transition region between the lateral portion of the device channel and a vertical portion of the device channel. A contact to the vertical portion of the device channel can be located on the second surface.
    Type: Application
    Filed: July 17, 2014
    Publication date: January 22, 2015
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Mikhail Gaevski, Michael Shur, Remigijus Gaska
  • Publication number: 20150014857
    Abstract: A solution for designing a semiconductor device, in which two or more attributes of a pair of electrodes are determined to, for example, minimize resistance between the electrodes, is provided. Each electrode can include a current feeding contact from which multiple fingers extend, which are interdigitated with the fingers of the other electrode in an alternating pattern. The attributes can include a target depth of each finger, a target effective width of each pair of adjacent fingers, and/or one or more target attributes of the current feeding contacts. Subsequently, the device and/or a circuit including the device can be fabricated.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 8878154
    Abstract: A circuit including a semiconductor device having a set of space-charge control electrodes is provided. The set of space-charge control electrodes is located between a first terminal, such as a gate or a cathode, and a second terminal, such as a drain or an anode, of the device. The circuit includes a biasing network, which supplies an individual bias voltage to each of the set of space-charge control electrodes. The bias voltage for each space-charge control electrode can be: selected based on the bias voltages of each of the terminals and a location of the space-charge control electrode relative to the terminals and/or configured to deplete a region of the channel under the corresponding space-charge control electrode at an operating voltage applied to the second terminal.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: November 4, 2014
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20140291740
    Abstract: A device including a plurality of perforations to a semiconductor channel is provided. The device includes a semiconductor structure forming the semiconductor channel. Additionally, the device includes a source contact, a drain contact, and a gate contact to the semiconductor channel. The plurality of perforations can be located in the semiconductor structure below the gate contact. Furthermore, a perforation in the plurality of perforations can extend into the semiconductor structure beyond a location of the semiconductor channel.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 2, 2014
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Grigory Simin, Mikhail Gaevski, Michael Shur, Remigijus Gaska