Patents by Inventor Gustavo A. Stolovitzky

Gustavo A. Stolovitzky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200016596
    Abstract: Techniques relate to forming a sorting device. A mesh is formed on top of a substrate. Metal assisted chemical etching is performed to remove substrate material of the substrate at locations of the mesh. Pillars are formed in the substrate by removal of the substrate material. The mesh is removed to leave the pillars in a nanopillar array. The pillars in the nanopillar array are designed with a spacing to sort particles of different sizes such that the particles at or above a predetermined dimension are sorted in a first direction and the particles below the predetermined dimension are sorted in a second direction.
    Type: Application
    Filed: September 25, 2019
    Publication date: January 16, 2020
    Inventors: Huan Hu, Joshua T. Smith, Gustavo A. Stolovitzky, Benjamin H. Wunsch
  • Publication number: 20200016595
    Abstract: Techniques relate to forming a sorting device. A mesh is formed on top of a substrate. Metal assisted chemical etching is performed to remove substrate material of the substrate at locations of the mesh. Pillars are formed in the substrate by removal of the substrate material. The mesh is removed to leave the pillars in a nanopillar array. The pillars in the nanopillar array are designed with a spacing to sort particles of different sizes such that the particles at or above a predetermined dimension are sorted in a first direction and the particles below the predetermined dimension are sorted in a second direction.
    Type: Application
    Filed: September 25, 2019
    Publication date: January 16, 2020
    Inventors: Huan Hu, Joshua T. Smith, Gustavo A. Stolovitzky, Benjamin H. Wunsch
  • Patent number: 10507466
    Abstract: Techniques relate to forming a sorting device. A mesh is formed on top of a substrate. Metal assisted chemical etching is performed to remove substrate material of the substrate at locations of the mesh. Pillars are formed in the substrate by removal of the substrate material. The mesh is removed to leave the pillars in a nanopillar array. The pillars in the nanopillar array are designed with a spacing to sort particles of different sizes such that the particles at or above a predetermined dimension are sorted in a first direction and the particles below the predetermined dimension are sorted in a second direction.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: December 17, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huan Hu, Joshua T. Smith, Gustavo A. Stolovitzky, Benjamin H. Wunsch
  • Patent number: 10464061
    Abstract: A technique includes forming a gradient channel with width and depth gradients. A mask is disposed on top of a substrate. The mask is patterned with at least one elongated channel pattern having different elongated channel pattern widths. A channel is etched in the substrate in a single etching step, the channel having a width gradient and a corresponding depth gradient both simultaneously etched in the single etching step according to the different elongated channel pattern widths in the mask.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: November 5, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORTAION
    Inventors: Jingwei Bai, Qinghuang Lin, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Publication number: 20190331561
    Abstract: Techniques for phosphoprotein detection, quantification, and purification using a chip-based pillar array are provided. In one aspect, a method for purifying a protein sample includes: introducing a mixture including the protein sample and an antibody to a nanoDLD array having a plurality of pillars separated by a gap g, wherein the antibody and proteins in the protein sample form antibody-protein complexes having a size that is greater than a size threshold of the nanoDLD array created by the gap g which permits size-based separation of the antibody-protein complexes as the mixture flows through the nanoDLD array; and collecting a purified protein sample containing the antibody-protein complexes from the nanoDLD array. A lab-on-a-chip (LOC) device including the nanoDLD array is also provided.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Inventors: Stacey M. Gifford, Gustavo A. Stolovitzky, Benjamin H. Wunsch
  • Patent number: 10385390
    Abstract: A technique for a nanodevice is provided. A reservoir is separated into two parts by a membrane. A nanopore is formed through the membrane, and the nanopore connects the two parts of the reservoir. The nanopore and the two parts of the reservoir are filled with ionic buffer. The membrane includes a graphene layer and insulating layers. The graphene layer is wired to first and second metal pads to form a graphene transistor in which transistor current flowing through the graphene transistor is modulated by charges or dipoles passing through the nanopore.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: August 20, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hongbo Peng, Gustavo A. Stolovitzky, Wenjuan Zhu
  • Patent number: 10386276
    Abstract: Techniques for phosphoprotein detection, quantification, and purification using a chip-based pillar array are provided. In one aspect, a method for purifying a protein sample includes: introducing a mixture including the protein sample and an antibody to a nanoDLD array having a plurality of pillars separated by a gap g, wherein the antibody and proteins in the protein sample form antibody-protein complexes having a size that is greater than a size threshold of the nanoDLD array created by the gap g which permits size-based separation of the antibody-protein complexes as the mixture flows through the nanoDLD array; and collecting a purified protein sample containing the antibody-protein complexes from the nanoDLD array. A lab-on-a-chip (LOC) device including the nanoDLD array is also provided.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: August 20, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stacey M. Gifford, Gustavo A. Stolovitzky, Benjamin H. Wunsch
  • Publication number: 20190200608
    Abstract: The method comprises contacting a silicon substrate with a silver salt and an acid for a time effective to produce spikes having a first end disposed on the silicon substrate and a second end extending away from the silicon substrate. The spikes have a second end diameter of about 10 nm to about 200 nm, a height of about 100 nm to 10 micrometers, and a density of about 10 to 100 per square microns. The nanostructures provide antimicrobial properties and can be transferred to the surface of various materials such as polymers.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Inventors: STACEY M. GIFFORD, HUAN HU, PABLO M. ROJAS, GUSTAVO A. STOLOVITZKY
  • Patent number: 10292384
    Abstract: The method comprises contacting a silicon substrate with a silver salt and an acid for a time effective to produce spikes having a first end disposed on the silicon substrate and a second end extending away from the silicon substrate. The spikes have a second end diameter of about 10 nm to about 200 nm, a height of about 100 nm to 10 micrometers, and a density of about 10 to 100 per square microns. The nanostructures provide antimicrobial properties and can be transferred to the surface of various materials such as polymers.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 21, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stacey M. Gifford, Huan Hu, Pablo M. Rojas, Gustavo A. Stolovitzky
  • Patent number: 10267784
    Abstract: A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: April 23, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Philip S. Waggoner
  • Patent number: 10094805
    Abstract: Techniques for increasing the capture zone in nano and microchannel-based polymer testing structures using concentric arrangements of nanostructures, such as nanopillars are provided. In one aspect, a testing structure for testing polymers is provided that includes a first fluid reservoir and a second fluid reservoir formed in an electrically insulating substrate; at least one channel formed in the insulating substrate that interconnects the first fluid reservoir and the second fluid reservoir; and an arrangement of nanostructures within either the first fluid reservoir or the second fluid reservoir wherein the nanostructures are arranged so as to form multiple concentric circles inside either the first fluid reservoir or the second fluid reservoir with each of the concentric circles being centered at an entry point of the channel. A method of analyzing a polymer using the testing structure is also provided.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: October 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Binquan Luan, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Patent number: 10058895
    Abstract: A technique relates sorting entities. The entities are introduced into a nanopillar array. The entities include a first population and a second population, and the nanopillar array includes nanopillars arranged to have a gap separating one from another. The nanopillars are ordered to have an array angle relative to a fluid flow direction. The entities are sorted through the nanopillar array by transporting the first population of the entities less than a predetermined size in a first direction and by transporting the second population of the entities at least the predetermined size in a second direction different from the first direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the entities having a sub-100 nanometer size.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: August 28, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann A. Astier, Joshua T. Smith, Gustavo A. Stolovitzky, Chao Wang, Benjamin H. Wunsch
  • Patent number: 10040682
    Abstract: A technique for a nanodevice is provided. The nanodevice includes a fluidic cell, and a membrane dividing the fluidic cell. A nanopore is formed through the membrane, and the nanopore is coated with an organic compound. A first part of the organic compound binds to a surface of the nanopore and a second part of the organic compound is exposed freely inside of the nanopore. The second part of the organic compound is configured to be switched among a first neutral hydrophilic end group, a second negatively charged hydrophilic end group, and a third neutral hydrophobic end group based on a switching mechanism.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: August 7, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Gustavo A. Stolovitzky, Deqiang Wang
  • Patent number: 10041930
    Abstract: A nanodevice includes a nanochannel disposed through a dielectric material. A first electrode is disposed on a first side of the nanochannel, is formed within the dielectric material and has a surface exposed within the nanochannel. A second electrode is disposed on a second side of the nanochannel, is formed within the dielectric material and has a surface exposed within the nanochannel opposite the first electrode. A power circuit is connected between the first and second electrodes to create a potential difference between the first and second electrodes such that portions of a molecule can be identified by a change in electrical properties across the first and second electrodes as the molecule passes.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: August 7, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jingwei Bai, Niina S. Haiminen, Laxmi P. Parida, Gustavo A. Stolovitzky
  • Patent number: 10029915
    Abstract: A technique for a nanodevice is provided. The nanodevice includes a fluidic cell, and a membrane dividing the fluidic cell. A nanopore is formed through the membrane, and the nanopore is coated with an organic compound. A first part of the organic compound binds to a surface of the nanopore and a second part of the organic compound is exposed freely inside of the nanopore. The second part of the organic compound is configured to be switched among a first neutral hydrophilic end group, a second negatively charged hydrophilic end group, and a third neutral hydrophobic end group based on a switching mechanism.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: July 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Gustavo A. Stolovitzky, Deqiang Wang
  • Publication number: 20180196924
    Abstract: A computer-implemented method of diagnosis of a patient comprises comparing a marker-print of a patient, wherein the marker-print comprises an N-value vector with each value in the vector indicative of a state of a biological marker of the patient, against a compendium of reference marker-prints, each reference marker-print having an associated biological condition, the reference marker-prints being stored in a marker-print database, to determine at least one reference marker-print having at least one matching value with the patient marker print. The method may comprise calculating, by a confidence module of the computer processor, a level of similarity between the patient marker-print and the at least one determined reference marker-print with the at least one matching value, thereby to provide an indication of a confidence level that the patient has the biological condition associated with the at least one determined reference marker-print having the at least one matching value.
    Type: Application
    Filed: January 9, 2017
    Publication date: July 12, 2018
    Inventors: Solomon Assefa, Geoffrey H. Siwo, Gustavo A. Stolovitzky
  • Patent number: 9983190
    Abstract: A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: May 29, 2018
    Assignee: International Business Machines Corporation
    Inventors: Qinghuang Lin, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Patent number: 9975147
    Abstract: A technique relates sorting entities. The entities are introduced into a nanopillar array. The entities include a first population and a second population, and the nanopillar array includes nanopillars arranged to have a gap separating one from another. The nanopillars are ordered to have an array angle relative to a fluid flow direction. The entities are sorted through the nanopillar array by transporting the first population of the entities less than a predetermined size in a first direction and by transporting the second population of the entities at least the predetermined size in a second direction different from the first direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the entities having a sub-100 nanometer size.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: May 22, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann A. Astier, Joshua T. Smith, Gustavo A. Stolovitzky, Chao Wang, Benjamin H. Wunsch
  • Publication number: 20180080857
    Abstract: Techniques for phosphoprotein detection, quantification, and purification using a chip-based pillar array are provided. In one aspect, a method for purifying a protein sample includes: introducing a mixture including the protein sample and an antibody to a nanoDLD array having a plurality of pillars separated by a gap g, wherein the antibody and proteins in the protein sample form antibody-protein complexes having a size that is greater than a size threshold of the nanoDLD array created by the gap g which permits size-based separation of the antibody-protein complexes as the mixture flows through the nanoDLD array; and collecting a purified protein sample containing the antibody-protein complexes from the nanoDLD array. A lab-on-a-chip (LOC) device including the nanoDLD array is also provided.
    Type: Application
    Filed: September 20, 2016
    Publication date: March 22, 2018
    Inventors: Stacey M. Gifford, Gustavo A. Stolovitzky, Benjamin H. Wunsch
  • Publication number: 20180046771
    Abstract: Embodiments may provide the capability to identify genes or biological processes that may be targeted by other therapeutics in a group of individuals who are less likely to benefit from a specific targeted therapeutic. For example, a method may comprise receiving an indication of a biomarker or biological characteristic to be used to stratify patients into those who can benefit from a specified therapy or intervention versus those who have less or no benefit, computing an impact of the genomic state of at least one gene on survival or clinical progression of patients in the two groups, generating a ranking of a differential impact on survival for each of the at least one gene in the two groups, and based on the generated ranking, identifying genes whose state is more important to survival in the group who do not benefit from the therapy or intervention.
    Type: Application
    Filed: August 15, 2016
    Publication date: February 15, 2018
    Inventors: Solomon Assefa, Geoffrey H. Siwo, Gustavo A. Stolovitzky