Patents by Inventor Gustavo A. Stolovitzky

Gustavo A. Stolovitzky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10040682
    Abstract: A technique for a nanodevice is provided. The nanodevice includes a fluidic cell, and a membrane dividing the fluidic cell. A nanopore is formed through the membrane, and the nanopore is coated with an organic compound. A first part of the organic compound binds to a surface of the nanopore and a second part of the organic compound is exposed freely inside of the nanopore. The second part of the organic compound is configured to be switched among a first neutral hydrophilic end group, a second negatively charged hydrophilic end group, and a third neutral hydrophobic end group based on a switching mechanism.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: August 7, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Gustavo A. Stolovitzky, Deqiang Wang
  • Patent number: 10041930
    Abstract: A nanodevice includes a nanochannel disposed through a dielectric material. A first electrode is disposed on a first side of the nanochannel, is formed within the dielectric material and has a surface exposed within the nanochannel. A second electrode is disposed on a second side of the nanochannel, is formed within the dielectric material and has a surface exposed within the nanochannel opposite the first electrode. A power circuit is connected between the first and second electrodes to create a potential difference between the first and second electrodes such that portions of a molecule can be identified by a change in electrical properties across the first and second electrodes as the molecule passes.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: August 7, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jingwei Bai, Niina S. Haiminen, Laxmi P. Parida, Gustavo A. Stolovitzky
  • Patent number: 10029915
    Abstract: A technique for a nanodevice is provided. The nanodevice includes a fluidic cell, and a membrane dividing the fluidic cell. A nanopore is formed through the membrane, and the nanopore is coated with an organic compound. A first part of the organic compound binds to a surface of the nanopore and a second part of the organic compound is exposed freely inside of the nanopore. The second part of the organic compound is configured to be switched among a first neutral hydrophilic end group, a second negatively charged hydrophilic end group, and a third neutral hydrophobic end group based on a switching mechanism.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: July 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Gustavo A. Stolovitzky, Deqiang Wang
  • Publication number: 20180196924
    Abstract: A computer-implemented method of diagnosis of a patient comprises comparing a marker-print of a patient, wherein the marker-print comprises an N-value vector with each value in the vector indicative of a state of a biological marker of the patient, against a compendium of reference marker-prints, each reference marker-print having an associated biological condition, the reference marker-prints being stored in a marker-print database, to determine at least one reference marker-print having at least one matching value with the patient marker print. The method may comprise calculating, by a confidence module of the computer processor, a level of similarity between the patient marker-print and the at least one determined reference marker-print with the at least one matching value, thereby to provide an indication of a confidence level that the patient has the biological condition associated with the at least one determined reference marker-print having the at least one matching value.
    Type: Application
    Filed: January 9, 2017
    Publication date: July 12, 2018
    Inventors: Solomon Assefa, Geoffrey H. Siwo, Gustavo A. Stolovitzky
  • Patent number: 9983190
    Abstract: A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: May 29, 2018
    Assignee: International Business Machines Corporation
    Inventors: Qinghuang Lin, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Patent number: 9975147
    Abstract: A technique relates sorting entities. The entities are introduced into a nanopillar array. The entities include a first population and a second population, and the nanopillar array includes nanopillars arranged to have a gap separating one from another. The nanopillars are ordered to have an array angle relative to a fluid flow direction. The entities are sorted through the nanopillar array by transporting the first population of the entities less than a predetermined size in a first direction and by transporting the second population of the entities at least the predetermined size in a second direction different from the first direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the entities having a sub-100 nanometer size.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: May 22, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann A. Astier, Joshua T. Smith, Gustavo A. Stolovitzky, Chao Wang, Benjamin H. Wunsch
  • Publication number: 20180080857
    Abstract: Techniques for phosphoprotein detection, quantification, and purification using a chip-based pillar array are provided. In one aspect, a method for purifying a protein sample includes: introducing a mixture including the protein sample and an antibody to a nanoDLD array having a plurality of pillars separated by a gap g, wherein the antibody and proteins in the protein sample form antibody-protein complexes having a size that is greater than a size threshold of the nanoDLD array created by the gap g which permits size-based separation of the antibody-protein complexes as the mixture flows through the nanoDLD array; and collecting a purified protein sample containing the antibody-protein complexes from the nanoDLD array. A lab-on-a-chip (LOC) device including the nanoDLD array is also provided.
    Type: Application
    Filed: September 20, 2016
    Publication date: March 22, 2018
    Inventors: Stacey M. Gifford, Gustavo A. Stolovitzky, Benjamin H. Wunsch
  • Publication number: 20180046771
    Abstract: Embodiments may provide the capability to identify genes or biological processes that may be targeted by other therapeutics in a group of individuals who are less likely to benefit from a specific targeted therapeutic. For example, a method may comprise receiving an indication of a biomarker or biological characteristic to be used to stratify patients into those who can benefit from a specified therapy or intervention versus those who have less or no benefit, computing an impact of the genomic state of at least one gene on survival or clinical progression of patients in the two groups, generating a ranking of a differential impact on survival for each of the at least one gene in the two groups, and based on the generated ranking, identifying genes whose state is more important to survival in the group who do not benefit from the therapy or intervention.
    Type: Application
    Filed: August 15, 2016
    Publication date: February 15, 2018
    Inventors: Solomon Assefa, Geoffrey H. Siwo, Gustavo A. Stolovitzky
  • Patent number: 9835539
    Abstract: A technique relates sorting biopolymers. The biopolymers are introduced into a nanopillar array, and the biopolymers include a first population and a second population. The nanopillar array includes nanopillars arranged to have a gap separating one from another. The biopolymers are sorted through the nanopillar array by transporting the first population of the biopolymers less than a predetermined bumping size according to a fluid flow direction and by transporting the second population of the biopolymers at least the predetermined bumping size according to a bumped direction different from the fluid flow direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the biopolymers.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: December 5, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann A. Astier, Joshua T. Smith, Gustavo A. Stolovitzky, Chao Wang, Benjamin H. Wunsch
  • Patent number: 9835538
    Abstract: A technique relates sorting biopolymers. The biopolymers are introduced into a nanopillar array, and the biopolymers include a first population and a second population. The nanopillar array includes nanopillars arranged to have a gap separating one from another. The biopolymers are sorted through the nanopillar array by transporting the first population of the biopolymers less than a predetermined bumping size according to a fluid flow direction and by transporting the second population of the biopolymers at least the predetermined bumping size according to a bumped direction different from the fluid flow direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the biopolymers.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: December 5, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann A. Astier, Joshua T. Smith, Gustavo A. Stolovitzky, Chao Wang, Benjamin H. Wunsch
  • Publication number: 20170329914
    Abstract: Embodiments of the present invention may provide the capability to predict the metastasis of cancer in a patient from one tissue to another. In an embodiment, a computer-implemented method for predicting metastasis may comprise receiving an indication of at least one disrupted gene of the cancer, traversing data representing a gene-to-gene or protein-to-protein interaction network specific for a type of the cancer type from a position of the received gene in the network to a position of at least one gene involved in metastasis for a tissue type, organ or body part, determining at least one shortest path in the network between the received gene and the at least one gene involved in metastasis for the tissue type, organ or body part, generating a prediction of metastasis to the tissue type based on the at least one determined path, and generating an output display indicating a likelihood of spread of cancer to the tissue type, organ or body part.
    Type: Application
    Filed: May 11, 2016
    Publication date: November 16, 2017
    Inventors: Solomon Assefa, Geoffrey H. Siwo, Gustavo A. Stolovitzky
  • Publication number: 20170320058
    Abstract: A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 9, 2017
    Inventors: Qinghuang Lin, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Publication number: 20170312747
    Abstract: Techniques relate to forming a sorting device. A mesh is formed on top of a substrate. Metal assisted chemical etching is performed to remove substrate material of the substrate at locations of the mesh. Pillars are formed in the substrate by removal of the substrate material. The mesh is removed to leave the pillars in a nanopillar array. The pillars in the nanopillar array are designed with a spacing to sort particles of different sizes such that the particles at or above a predetermined dimension are sorted in a first direction and the particles below the predetermined dimension are sorted in a second direction.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 2, 2017
    Inventors: Huan Hu, Joshua T. Smith, Gustavo A. Stolovitzky, Benjamin H. Wunsch
  • Publication number: 20170298429
    Abstract: A technique for a nanodevice is provided. A reservoir is separated into two parts by a membrane. A nanopore is formed through the membrane, and the nanopore connects the two parts of the reservoir. The nanopore and the two parts of the reservoir are filled with ionic buffer. The membrane includes a graphene layer and insulating layers. The graphene layer is wired to first and second metal pads to form a graphene transistor in which transistor current flowing through the graphene transistor is modulated by charges or dipoles passing through the nanopore.
    Type: Application
    Filed: June 29, 2017
    Publication date: October 19, 2017
    Inventors: Hongbo Peng, Gustavo A. Stolovitzky, Wenjuan Zhu
  • Patent number: 9776184
    Abstract: A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: October 3, 2017
    Assignee: International Business Machines Corporation
    Inventors: Qinghuang Lin, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Patent number: 9765392
    Abstract: A technique for a nanodevice is provided. A reservoir is separated into two parts by a membrane. A nanopore is formed through the membrane, and the nanopore connects the two parts of the reservoir. The nanopore and the two parts of the reservoir are filled with ionic buffer. The membrane includes a graphene layer and insulating layers. The graphene layer is wired to first and second metal pads to form a graphene transistor in which transistor current flowing through the graphene transistor is modulated by charges or dipoles passing through the nanopore.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: September 19, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hongbo Peng, Gustavo A. Stolovitzky, Wenjuan Zhu
  • Patent number: 9758821
    Abstract: A technique for a nanodevice is provided. A reservoir is separated into two parts by a membrane. A nanopore is formed through the membrane, and the nanopore connects the two parts of the reservoir. The nanopore and the two parts of the reservoir are filled with ionic buffer. The membrane includes a graphene layer and insulating layers. The graphene layer is wired to first and second metal pads to form a graphene transistor in which transistor current flowing through the graphene transistor is modulated by charges passing through the nanopore.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: September 12, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hongbo Peng, Gustavo A. Stolovitzky, Wenjuan Zhu
  • Patent number: 9758822
    Abstract: A technique for a nanodevice is provided. A reservoir is separated into two parts by a membrane. A nanopore is formed through the membrane, and the nanopore connects the two parts of the reservoir. The nanopore and the two parts of the reservoir are filled with ionic buffer. The membrane includes a graphene layer and insulating layers. The graphene layer is wired to first and second metal pads to form a graphene transistor in which transistor current flowing through the graphene transistor is modulated by charges or dipoles passing through the nanopore.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: September 12, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hongbo Peng, Gustavo A. Stolovitzky, Wenjuan Zhu
  • Publication number: 20170234833
    Abstract: Techniques for increasing the capture zone in nano and microchannel-based polymer testing structures using concentric arrangements of nanostructures, such as nanopillars are provided. In one aspect, a testing structure for testing polymers is provided that includes a first fluid reservoir and a second fluid reservoir formed in an electrically insulating substrate; at least one channel formed in the insulating substrate that interconnects the first fluid reservoir and the second fluid reservoir; and an arrangement of nanostructures within either the first fluid reservoir or the second fluid reservoir wherein the nanostructures are arranged so as to form multiple concentric circles inside either the first fluid reservoir or the second fluid reservoir with each of the concentric circles being centered at an entry point of the channel. A method of analyzing a polymer using the testing structure is also provided.
    Type: Application
    Filed: May 1, 2017
    Publication date: August 17, 2017
    Inventors: Binquan Luan, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Patent number: 9733232
    Abstract: A technique relates to stretching an extensible molecule. The molecule moves through an array of pillars in a flow direction, where the array has an interface connecting a first pillar region and a second pillar region. Stretching the molecule by traversing the molecule in the flow direction through the interface connecting the first pillar region to the second pillar region, such that a first end and a second end of the molecule straddle a straddle pillar, thereby causing the first end to extend along a first path in the second and the second end to extend along a second path. Traversing the molecule stretches the first end and the second end along two different paths. The molecule is further traversed through the array such that the second end follows the first end along the first path, where the stretching causes the molecule to be in an uncoiled state.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: August 15, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gustavo A. Stolovitzky, Chao Wang