Patents by Inventor H. Jim Fulford

H. Jim Fulford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210082901
    Abstract: Techniques herein include methods for fabricating high density logic and memory for advanced circuit architecture. The methods can include forming multilayer stacks on separate substrates and forming bonding films over the multilayer stacks, then contacting and bonding the bonding films to form a combined structure including each of the multilayer stacks. The method can be repeated to form additional combinations. In between iterations, transistor devices may be formed from the combined structures. Ionized atom implantation can facilitate cleavage of a substrate destined for growth of additional multilayers, wherein an anneal weakens the substrate at a predetermined penetration depth of the ionized atom implantation.
    Type: Application
    Filed: April 21, 2020
    Publication date: March 18, 2021
    Applicant: Tokyo Electron Limited
    Inventors: Mark I. GARDNER, H. Jim Fulford, Jeffrey Smith, Lars Liebmann, Daniel Chanemougame
  • Publication number: 20210043519
    Abstract: A method of forming transistor devices is described that includes forming a first transistor plane on a substrate, the first transistor plane including at least one layer of epitaxial film adaptable for forming channels of field effect transistors, depositing a first insulator layer on the first transistor plane, depositing a first layer of polycrystalline silicon on the first insulator layer, annealing the first layer of polycrystalline silicon using laser heating. The laser heating increases grain size of the first layer of polycrystalline silicon. The method further includes forming a second transistor plane on the first layer of polycrystalline silicon, the second transistor plane being adaptable for forming channels of field effect transistors, depositing a second insulator layer on the second transistor plane, depositing a second layer of polycrystalline silicon on the second insulator layer, and annealing the second layer of polycrystalline silicon using laser heating.
    Type: Application
    Filed: December 6, 2019
    Publication date: February 11, 2021
    Applicant: Tokyo Electron Limited
    Inventors: H. Jim FULFORD, Mark I. GARDNER, Jeffrey SMITH, Lars LIEBMANN, Daniel CHANEMOUGAME
  • Publication number: 20210043516
    Abstract: A method of forming transistor devices includes forming a first transistor plane on a substrate, the first transistor plane including at least one layer of field effect transistors; depositing a first insulator layer on the first transistor plane; forming holes in the first insulator layer using a first etch mask; depositing a first layer of polycrystalline silicon on the first insulator layer, the first layer of polycrystalline filling the holes and covering the first insulator layer; and annealing the first layer of polycrystalline silicon using laser heating, the laser heating creating regions of single-crystal silicon. A top surface of the first transistor plane is a top surface of a stack of silicon formed by epitaxial growth.
    Type: Application
    Filed: December 5, 2019
    Publication date: February 11, 2021
    Applicant: Tokyo Electron Limited
    Inventors: Mark I. GARDNER, H. Jim Fulford, Jeffrey Smith, Lars Liebmann, Daniel Chanemougame
  • Publication number: 20210013326
    Abstract: Microfabrication of a collection of transistor types on multiple transistor planes in which both HV (high voltage transistors) and LV (low-voltage transistors) stacks are designed on a single substrate. As high voltage transistors require higher drain-source voltages (Vds), higher gate voltages (Vg), and thus higher Vt (threshold voltage), and relatively thicker 3D gate oxide thicknesses, circuits made as described herein provide multiple different threshold voltages devices for both low voltage and high voltage devices for NMOS and PMOS, with multiple different gate oxide thickness values to enable multiple transistor planes for 3D devices.
    Type: Application
    Filed: December 18, 2019
    Publication date: January 14, 2021
    Applicant: Tokyo Electron Limited
    Inventors: Mark I. Gardner, H. Jim Fulford
  • Publication number: 20210013111
    Abstract: A method for microfabrication of a three dimensional transistor stack having gate-all-around field-effect transistor devices. The channels hang between source/drain regions. Each channel is selectively deposited with layers of materials designed for adjusting the threshold voltage of the channel. The layers may be oxides, high-k materials, work function materials and metallization. The three dimensional transistor stack forms an array of high threshold voltage devices and low threshold voltage devices in a single package.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 14, 2021
    Applicant: Tokyo Electron Limited
    Inventors: Jeffrey SMITH, Kandabara TAPILY, Lars LIEBMANN, Daniel CHANEMOUGAME, Mark GARDNER, H. Jim FULFORD, Anton J. DEVILLIERS
  • Publication number: 20200411518
    Abstract: A semiconductor device includes a plurality of nano-channel field-effect transistor stacks positioned adjacent to each other such that source-drain regions are shared between adjacent nano-channel field-effect transistor stacks, each nano-channel field-effect transistor stack including at least two nano-channel field-effect transistors and corresponding source/drain regions vertically separated from each other.
    Type: Application
    Filed: October 2, 2019
    Publication date: December 31, 2020
    Applicant: Tokyo Electron Limited
    Inventors: H. Jim FULFORD, Mark I. Gardner
  • Publication number: 20200365511
    Abstract: In a semiconductor device, a device structure is positioned over a substrate, where the device structure includes devices. A wiring structure of the semiconductor device is positioned over the substrate and coupled to at least one of the devices. The wiring structure includes at least one of programmable lines and programmable vertical interconnects, where the programmable lines extend along a top surface of the substrate and the programmable vertical interconnects extend along a vertical direction perpendicular to the top surface of the substrate. The programmable lines and the programmable vertical interconnects include a programmable material having a modifiable resistivity in that the programmable lines and the programmable vertical interconnects change between being conductive and being non-conductive in responsive to a current pattern delivered to the programmable lines and the programmable vertical interconnects.
    Type: Application
    Filed: May 15, 2020
    Publication date: November 19, 2020
    Applicant: Tokyo Electron Limited
    Inventors: Mark I. Gardner, H. Jim Fulford, Anton J. deVilliers
  • Publication number: 20200365506
    Abstract: A semiconductor device includes a first level having a plurality of transistor devices, and a first wiring level positioned over the first level. The first wiring level includes a plurality of conductive lines extending parallel to the first level, a plurality of conductive vertical interconnects extending perpendicular to the first level, and one or more programmable vertical interconnects that extend perpendicular to the first level and include a programmable material having a modifiable resistivity in that the one or more programmable vertical interconnects change between being conductive and being non-conductive according to a current pattern.
    Type: Application
    Filed: August 8, 2019
    Publication date: November 19, 2020
    Applicant: Tokyo Electron Limited
    Inventors: Mark I. Gardner, H. Jim Fulford, Anton J. deVilliers
  • Publication number: 20200365507
    Abstract: A semiconductor device includes a first level having a plurality of transistor devices, and a first wiring level positioned over the first level. The first wiring level includes a plurality of conductive lines extending parallel to the first level, and one or more programmable horizontal bridges extending parallel to the first level. Each of the one or more programmable horizontal bridges electrically connects two respective conductive lines of the plurality of conductive lines in the first wiring level. The one or more programmable horizontal bridges include a programmable material having a modifiable resistivity in that the one or more programmable horizontal bridges change between being conductive and being non-conductive.
    Type: Application
    Filed: August 8, 2019
    Publication date: November 19, 2020
    Applicant: Tokyo Electron Limited
    Inventors: H. Jim Fulford, Mark I. Gardner, Anton J. deVilliers
  • Publication number: 20200328102
    Abstract: A method for marking a semiconductor substrate at the die level for providing unique authentication and serialization includes projecting a first pattern of actinic radiation onto a layer of photoresist on the substrate using mask-based photolithography, the first pattern defining semiconductor device structures and projecting a second pattern of actinic radiation onto the layer of photoresist using direct-write projection, the second pattern defining a unique identifier.
    Type: Application
    Filed: July 31, 2019
    Publication date: October 15, 2020
    Applicant: Tokyo Electron Limited
    Inventors: Anthony SCHEPIS, Anton J. deVILLIERS, H. Jim FULFORD
  • Publication number: 20200328103
    Abstract: A method for marking a semiconductor substrate at the die level for providing unique authentication and serialization includes projecting a first pattern of actinic radiation onto a layer of photoresist on the substrate using mask-based photolithography, the first pattern defining semiconductor device structures and projecting a second pattern of actinic radiation onto the layer of photoresist using direct-write projection, the second pattern defining a unique wiring structure having a unique electrical signature.
    Type: Application
    Filed: July 31, 2019
    Publication date: October 15, 2020
    Applicant: Tokyo Electron Limited
    Inventors: H. Jim FULFORD, Anthony SCHEPIS, Anton J. deVILLIERS
  • Patent number: 8575716
    Abstract: A method of forming memory array and peripheral circuitry isolation includes chemical vapor depositing a silicon dioxide-comprising liner over sidewalls of memory array circuitry isolation trenches and peripheral circuitry isolation trenches formed in semiconductor material. Dielectric material is flowed over the silicon dioxide-comprising liner to fill remaining volume of the array isolation trenches and to form a dielectric liner over the silicon dioxide-comprising liner in at least some of the peripheral isolation trenches. The dielectric material is furnace annealed at a temperature no greater than about 500° C. The annealed dielectric material is rapid thermal processed to a temperature no less than about 800° C. A silicon dioxide-comprising material is chemical vapor deposited over the rapid thermal processed dielectric material to fill remaining volume of said at least some peripheral isolation trenches.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: November 5, 2013
    Assignee: Micron Technology, Inc.
    Inventors: James Mathew, Brett D. Lowe, Yunjun Ho, H. Jim Fulford, Jie Sun, Zhaoli Sun
  • Publication number: 20130249050
    Abstract: A method of forming memory array and peripheral circuitry isolation includes chemical vapor depositing a silicon dioxide-comprising liner over sidewalls of memory array circuitry isolation trenches and peripheral circuitry isolation trenches formed in semiconductor material. Dielectric material is flowed over the silicon dioxide-comprising liner to fill remaining volume of the array isolation trenches and to form a dielectric liner over the silicon dioxide-comprising liner in at least some of the peripheral isolation trenches. The dielectric material is furnace annealed at a temperature no greater than about 500° C. The annealed dielectric material is rapid thermal processed to a temperature no less than about 800° C. A silicon dioxide-comprising material is chemical vapor deposited over the rapid thermal processed dielectric material to fill remaining volume of said at least some peripheral isolation trenches.
    Type: Application
    Filed: May 14, 2013
    Publication date: September 26, 2013
    Applicant: Micron Technology, Inc.
    Inventors: James Mathew, Brett D. Lowe, Yunjun Ho, H. Jim Fulford, Jie Sun, Zhaoli Sun
  • Patent number: 8461016
    Abstract: A method of forming memory array and peripheral circuitry isolation includes chemical vapor depositing a silicon dioxide-comprising liner over sidewalls of memory array circuitry isolation trenches and peripheral circuitry isolation trenches formed in semiconductor material. Dielectric material is flowed over the silicon dioxide-comprising liner to fill remaining volume of the array isolation trenches and to form a dielectric liner over the silicon dioxide-comprising liner in at least some of the peripheral isolation trenches. The dielectric material is furnace annealed at a temperature no greater than about 500° C. The annealed dielectric material is rapid thermal processed to a temperature no less than about 800° C. A silicon dioxide-comprising material is chemical vapor deposited over the rapid thermal processed dielectric material to fill remaining volume of said at least some peripheral isolation trenches.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: June 11, 2013
    Assignee: Micron Technology, Inc.
    Inventors: James Mathew, Brett D. Lowe, Yunjun Ho, H. Jim Fulford, Jie Sun, Zhaoli Sun
  • Publication number: 20130087883
    Abstract: A method of forming memory array and peripheral circuitry isolation includes chemical vapor depositing a silicon dioxide-comprising liner over sidewalls of memory array circuitry isolation trenches and peripheral circuitry isolation trenches formed in semiconductor material. Dielectric material is flowed over the silicon dioxide-comprising liner to fill remaining volume of the array isolation trenches and to form a dielectric liner over the silicon dioxide-comprising liner in at least some of the peripheral isolation trenches. The dielectric material is furnace annealed at a temperature no greater than about 500° C. The annealed dielectric material is rapid thermal processed to a temperature no less than about 800° C. A silicon dioxide-comprising material is chemical vapor deposited over the rapid thermal processed dielectric material to fill remaining volume of said at least some peripheral isolation trenches.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Inventors: James Mathew, Brett D. Lowe, Yunjun Ho, H. Jim Fulford, Jie Sun, Zhaoli Sun
  • Patent number: 6979878
    Abstract: A method for isolating a first active region from a second active region, both of which are configured within a semiconductor substrate. The method comprises forming a dielectric masking layer above a semiconductor substrate. An opening is then formed through the masking layer. A pair of dielectric spacers are formed upon the sidewalls of the masking layer within the opening. A trench is then etched in the semiconductor substrate between the dielectric spacers. A first dielectric layer is then thermally grown on the walls and base of the trench. A CVD oxide is deposited into the trench and processed such that the upper surface of the CVD oxide is commensurate with the substrate surface. Portions of the spacers are also removed such that the thickness of the spacers is between about 0 to 200 ?. Silicon atoms and/or barrier atoms, such as nitrogen atoms, are then implanted ino regions of the active areas in close proximity to the trench isolation structure.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: December 27, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark I. Gardner, H. Jim Fulford, Derick J. Wristers
  • Patent number: 6911707
    Abstract: An ultrathin gate dielectric having a graded dielectric constant and a method for forming the same are provided. The gate dielectric is believed to allow enhanced performance of semiconductor devices including transistors and dual-gate memory cells. A thin nitrogen-containing oxide, preferably having a thickness of less than about 10 angstroms, is formed on a semiconductor substrate. A silicon nitride layer having a thickness of less than about 30 angstroms may be formed over the nitrogen-containing oxide. The oxide and nitride layers are annealed in ammonia and nitrous oxide ambients, and the nitride layer thickness is reduced using a flowing-gas etch process. The resulting two-layer gate dielectric is believed to provide increased capacitance as compared to a silicon dioxide dielectric while maintaining favorable interface properties with the underlying substrate. In an alternative embodiment, a different high dielectric constant material is substituted for the silicon nitride.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: June 28, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark I. Gardner, Dim-Lee Kwong, H. Jim Fulford, Jr.
  • Patent number: 6746616
    Abstract: In one illustrative embodiment, a system is comprised of a semiconductor processing tool, an etcher, a metrology tool, and a controller. The semiconductor processing tool is capable of forming a process layer above a semiconducting substrate. The etcher is capable of removing at least a portion of the process layer. The metrology tool is capable of measuring a first depth of the etch at a first location in a first preselected region of the semiconducting substrate. The controller is capable of comparing the first depth to a desired depth, and varying the temperature of a subsequently processed semiconducting substrate in a region corresponding to the first preselected region in response to the first depth being different from the desired depth.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: June 8, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: H. Jim Fulford, Jeremy Lansford
  • Patent number: 6706631
    Abstract: A method of controlling the sheet resistance of metal silicide regions by controlling the salicide strip time is provided. In one illustrative embodiment, the method comprises forming a layer comprised of a refractory metal, determining a thickness of the layer of refractory metal, and converting a portion of the layer of refractory metal to a metal silicide. The method further comprises determining a duration of an etching process to be used to remove unreacted portions of the refractory metal layer based upon the determined thickness of the refractory metal layer, and performing the etching process for the determined duration.
    Type: Grant
    Filed: July 25, 2000
    Date of Patent: March 16, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventor: H. Jim Fulford
  • Patent number: 6661057
    Abstract: A transistor is formed in an active area having a segmented gate structure. The segmented gate structure advantageously provides for dynamic control of a channel region formed within the transistor. Lightly doped source and drain (LDD) regions are formed aligned to a gate electrode. After forming an insulating layer adjacent the exposed surfaces of the gate electrode, conductive spacers are formed disposed overlying the LDD regions. These spacers are electrically isolated from the gate electrode by the insulating layer. Heavily doped source and drain (S/D) regions are formed which are aligned to the spacers and make electrical contact, for example through a salicide process, supplied to the conductive spacer, the gate electrode, and the S/D regions. The described structure advantageously supplies dynamic control of the channel region through dynamic, independent control of the LDD portions of the S/D regions.
    Type: Grant
    Filed: April 7, 1998
    Date of Patent: December 9, 2003
    Inventors: Robert Dawson, Mark I. Gardner, Frederick N. Hause, H. Jim Fulford, Jr., Mark W. Michael, Bradley T. Moore, Derick J. Wristers