Patents by Inventor H. Manning

H. Manning has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060147379
    Abstract: Compounds and methods related to NIR molecular imaging, in-vitro and in-vivo functional imaging, therapy/efficacy monitoring, and cancer and metastatic activity imaging. Compounds and methods demonstrated pertain to the field of peripheral benzodiazepine receptor imaging, metabolic imaging, cellular respiration imaging, cellular proliferation imaging as targeted agents that incorporate signaling agents.
    Type: Application
    Filed: June 10, 2005
    Publication date: July 6, 2006
    Inventors: Darryl Bornhop, H. Manning, Mingfeng Bai, Shelby Wyatt
  • Publication number: 20060081884
    Abstract: The invention includes semiconductor structures having buried silicide-containing bitlines. Vertical surround gate transistor structures can be formed over the bitlines. The surround gate transistor structures can be incorporated into memory devices, such as, for example, DRAM devices. The invention can be utilized for forming 4F2 DRAM devices.
    Type: Application
    Filed: November 22, 2005
    Publication date: April 20, 2006
    Inventors: Todd Abbott, H. Manning
  • Patent number: 7023535
    Abstract: An optical measuring apparatus includes an optical scanning system that supplies to a device under test electromagnetic energy at a plurality of periodically varying wavelengths, a measuring circuit that measures electromagnetic energy from the device under test, and a synchronizer, including a device responsive to the electromagnetic energy from the optical scanning system to provide a known response to one or more wavelengths of the electromagnetic energy to synchronize the measuring circuit with the optical scanning system. The device responsive to the electromagnetic energy may provide known absorption or transmission maxima or minima. Exemplary devices responsive to the electromagnetic energy include a wavelength reference, e.g., a gas cell, a Fabry Perot device or a device that provides a specific wavelength dependent response.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: April 4, 2006
    Inventors: William H. Manning, Michael Paul Minneman
  • Publication number: 20060063344
    Abstract: The invention includes semiconductor constructions, and also includes methods of forming pluralities of capacitor devices. An exemplary method of the invention includes forming conductive storage node material within openings in an insulative material to form conductive containers. A retaining structure lattice is formed in physical contact with at least some of the containers, and subsequently the insulative material is removed to expose outer surfaces of the containers. The retaining structure can alleviate toppling or other loss of structural integrity of the container structures. The electrically conductive containers correspond to first capacitor electrodes. After the outer sidewalls of the containers are exposed, dielectric material is formed within the containers and along the exposed outer sidewalls. Subsequently, a second capacitor electrode is formed over the dielectric material. The first and second capacitor electrodes, together with the dielectric material, form a plurality of capacitor devices.
    Type: Application
    Filed: November 10, 2005
    Publication date: March 23, 2006
    Inventors: H. Manning, Thomas Graettinger, Marsela Pontoh
  • Publication number: 20060063345
    Abstract: The invention includes semiconductor constructions, and also includes methods of forming pluralities of capacitor devices. An exemplary method of the invention includes forming conductive storage node material within openings in an insulative material to form conductive containers. A retaining structure lattice is formed in physical contact with at least some of the containers, and subsequently the insulative material is removed to expose outer surfaces of the containers. The retaining structure can alleviate toppling or other loss of structural integrity of the container structures. The electrically conductive containers correspond to first capacitor electrodes. After the outer sidewalls of the containers are exposed, dielectric material is formed within the containers and along the exposed outer sidewalls. Subsequently, a second capacitor electrode is formed over the dielectric material. The first and second capacitor electrodes, together with the dielectric material, form a plurality of capacitor devices.
    Type: Application
    Filed: November 10, 2005
    Publication date: March 23, 2006
    Inventors: H. Manning, Thomas Graettinger, Marsela Pontoh
  • Publication number: 20060043505
    Abstract: The invention includes semiconductor constructions, methods of forming gatelines, and methods of forming transistor structures. The invention can include, for example, a damascene method of forming a gateline. A thin segment of dielectric material is formed between two thicker segments of dielectric material, with the thin and thicker segments of dielectric material being within an opening. A gateline material is formed within the opening and over the thin and thicker segments of dielectric material. The construction comprising the gateline material over the thin and thicker segments of dielectric material can be supported by a semiconductor substrate having a primary surface which defines a horizontal direction. The thin and thicker segments of dielectric material can comprise upper surfaces substantially parallel to the primary surface of the substrate, and can join to one another at steps having primary surfaces substantially orthogonal to the primary surface of the substrate.
    Type: Application
    Filed: August 27, 2004
    Publication date: March 2, 2006
    Inventors: Kunal Parekh, H. Manning
  • Publication number: 20060046420
    Abstract: The invention includes methods of forming a plurality of capacitors. In one implementation, a plurality of capacitor electrode openings is formed over a substrate. Individual of the capacitor electrode openings are bounded on a first pair of opposing sides by a first capacitor electrode-forming material at one elevation and on a second pair of opposing sides by a different second capacitor electrode-forming material at the one elevation. Individual capacitor electrodes are formed within individual of the capacitor electrode openings. The capacitor electrodes are incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Application
    Filed: August 27, 2004
    Publication date: March 2, 2006
    Inventor: H. Manning
  • Publication number: 20060046473
    Abstract: The invention comprises methods of forming a conductive contact to a source/drain region of a field effect transistor, and methods of forming local interconnects. In one implementation, a method of forming a conductive contact to a source/drain region of a field effect transistor includes providing gate dielectric material intermediate a transistor gate and a channel region of a field effect transistor. At least some of the gate dielectric material extends to be received over at least one source/drain region of the field effect transistor. The gate dielectric material received over the one source/drain region is exposed to conditions effective to change it from being electrically insulative to being electrically conductive and in conductive contact with the one source/drain region. Other aspects and implementations are contemplated.
    Type: Application
    Filed: September 1, 2004
    Publication date: March 2, 2006
    Inventors: Cem Basceri, Gurtej Sandhu, H. Manning
  • Publication number: 20060046392
    Abstract: The invention includes methods in which an angled implant is utilized to self-align a source/drain region implant with the top edge of a gateline of a vertical transistor structure. The invention also includes methods in which an angled implant is utilized to implant dopant beneath the gateline of a vertical transistor structure. Vertical transistor structures formed in accordance with methodology of the present invention can be incorporated into various types of integrated circuitry, including, for example, DRAM arrays.
    Type: Application
    Filed: August 26, 2004
    Publication date: March 2, 2006
    Inventors: H. Manning, Kunal Parekh, Cem Basceri, Gurtej Sandhu
  • Publication number: 20060043466
    Abstract: A memory device having a field effect transistor with a stepped gate dielectric and a method of making the same are herein disclosed. The stepped gate dielectric is formed on a semiconductor substrate and consists of a pair of charge trapping dielectrics separated by a gate dielectric; a gate conductor is formed thereover. Source and drain areas are formed in the semiconductor substrate on opposing sides of the pair of charge trapping dielectrics. The memory device is made by forming a charge trapping dielectric layer on a semiconductor substrate. A trench is formed through the charge trapping dielectric layer to expose a portion of the semiconductor substrate. A gate dielectric layer is formed within the trench and a gate conductor layer is formed over the charge trapping and gate dielectric layers.
    Type: Application
    Filed: October 25, 2005
    Publication date: March 2, 2006
    Inventors: H. Manning, Kunal Parekh
  • Publication number: 20060043467
    Abstract: A memory device having a field effect transistor with a stepped gate dielectric and a method of making the same are herein disclosed. The stepped gate dielectric is formed on a semiconductor substrate and consists of a pair of charge trapping dielectrics separated by a gate dielectric; a gate conductor is formed thereover. Source and drain areas are formed in the semiconductor substrate on opposing sides of the pair of charge trapping dielectrics. The memory device is made by forming a charge trapping dielectric layer on a semiconductor substrate. A trench is formed through the charge trapping dielectric layer to expose a portion of the semiconductor substrate. A gate dielectric layer is formed within the trench and a gate conductor layer is formed over the charge trapping and gate dielectric layers.
    Type: Application
    Filed: October 25, 2005
    Publication date: March 2, 2006
    Inventors: H. Manning, Kunal Parekh
  • Publication number: 20060043468
    Abstract: A memory device having a field effect transistor with a stepped gate dielectric and a method of making the same are herein disclosed. The stepped gate dielectric is formed on a semiconductor substrate and consists of a pair of charge trapping dielectrics separated by a gate dielectric; a gate conductor is formed thereover. Source and drain areas are formed in the semiconductor substrate on opposing sides of the pair of charge trapping dielectrics. The memory device is made by forming a charge trapping dielectric layer on a semiconductor substrate. A trench is formed through the charge trapping dielectric layer to expose a portion of the semiconductor substrate. A gate dielectric layer is formed within the trench and a gate conductor layer is formed over the charge trapping and gate dielectric layers.
    Type: Application
    Filed: October 25, 2005
    Publication date: March 2, 2006
    Inventors: H. Manning, Kunal Parekh
  • Publication number: 20060043462
    Abstract: A memory device having a field effect transistor with a stepped gate dielectric and a method of making the same are herein disclosed. The stepped gate dielectric is formed on a semiconductor substrate and consists of a pair of charge trapping dielectrics separated by a gate dielectric; a gate conductor is formed thereover. Source and drain areas are formed in the semiconductor substrate on opposing sides of the pair of charge trapping dielectrics. The memory device is made by forming a charge trapping dielectric layer on a semiconductor substrate. A trench is formed through the charge trapping dielectric layer to expose a portion of the semiconductor substrate. A gate dielectric layer is formed within the trench and a gate conductor layer is formed over the charge trapping and gate dielectric layers.
    Type: Application
    Filed: August 27, 2004
    Publication date: March 2, 2006
    Inventors: H. Manning, Kunal Parekh
  • Publication number: 20060043503
    Abstract: The invention includes semiconductor constructions, methods of forming gatelines, and methods of forming transistor structures. The invention can include, for example, a damascene method of forming a gateline. A thin segment of dielectric material is formed between two thicker segments of dielectric material, with the thin and thicker segments of dielectric material being within an opening. A gateline material is formed within the opening and over the thin and thicker segments of dielectric material. The construction comprising the gateline material over the thin and thicker segments of dielectric material can be supported by a semiconductor substrate having a primary surface which defines a horizontal direction. The thin and thicker segments of dielectric material can comprise upper surfaces substantially parallel to the primary surface of the substrate, and can join to one another at steps having primary surfaces substantially orthogonal to the primary surface of the substrate.
    Type: Application
    Filed: September 28, 2005
    Publication date: March 2, 2006
    Inventors: Kunal Parekh, H. Manning
  • Publication number: 20060038256
    Abstract: The invention includes semiconductor fuse arrangements containing an electrically conductive plate over and in electrical contact with a plurality of electrically conductive links. Each of the links contacts the electrically conductive plate as a separate region relative to the other links, and the region where a link makes contact to the electrically conductive plate is a fuse. The invention also includes methods of forming semiconductor fuse arrangements.
    Type: Application
    Filed: August 18, 2005
    Publication date: February 23, 2006
    Inventor: H. Manning
  • Publication number: 20060040437
    Abstract: A mass of material is formed over a semiconductor substrate. Semiconductive material is formed laterally proximate the mass of material. A space is provided laterally between the mass of material and the semiconductive material. The space comprises an outermost portion and a portion immediately adjacent thereto. The outermost portion has a maximum lateral width which is greater than that of the adjacent portion. Gate dielectric material and conductive gate material are formed within the space. The gate dielectric material and the conductive gate material in combination fill the adjacent portion of the space but do not fill the outermost portion of the space. At least the conductive gate material is etched from at least a majority of the outermost portion of the space. Source/drain regions are formed operatively proximate the conductive gate material and the semiconductive material is used as a channel region of the field effect transistor.
    Type: Application
    Filed: August 23, 2004
    Publication date: February 23, 2006
    Inventors: Gurtej Sandhu, H. Manning, Cem Basceri
  • Publication number: 20060038244
    Abstract: This invention includes gated field effect devices, and methods of forming gated field effect devices. In one implementation, a gated field effect device includes a pair of source/drain regions having a channel region therebetween. A gate is received proximate the channel region between the source/drain regions. The gate has a gate width between the source/drain regions. A gate dielectric is received intermediate the channel region and the gate. The gate dielectric has at least two different regions along the width of the gate. The different regions are characterized by different materials which are effective to define the two different regions to have different dielectric constants k. Other aspects and implementations are contemplated.
    Type: Application
    Filed: October 19, 2005
    Publication date: February 23, 2006
    Inventors: Cem Basceri, H. Manning, Gurtej Sandhu, Kunal Parekh
  • Publication number: 20060014344
    Abstract: The invention includes methods of forming semiconductor constructions and methods of forming pluralities of capacitor devices. An exemplary method of the invention includes forming conductive material within openings in an insulative material to form capacitor electrode structures. A lattice is formed in physical contact with at least some of the electrode structures, a protective cap is formed over the lattice, and subsequently some of the insulative material is removed to expose outer surfaces of the electrode structures. The lattice can alleviate toppling or other loss of structural integrity of the electrode structures, and the protective cap can protect covered portions of the insulative material from the etch. After the outer sidewalls of the electrode structures are exposed, the protective cap is removed. The electrode structures are then incorporated into capacitor constructions.
    Type: Application
    Filed: July 19, 2004
    Publication date: January 19, 2006
    Inventor: H. Manning
  • Publication number: 20060003544
    Abstract: The invention includes methods of forming trench isolation regions. In one implementation, a masking material is formed over a semiconductor substrate. The masking material comprises at least one of tungsten, titanium nitride and amorphous carbon. An opening is formed through the masking material and into the semiconductor substrate effective to form an isolation trench within semiconductive material of the semiconductor substrate. A trench isolation material is formed within the isolation trench and over the masking material outside of the trench effective to overfill the isolation trench. The trench isolation material is polished at least to an outermost surface of the at least one of tungsten, titanium nitride and amorphous carbon of the masking material. The at least one of tungsten, titanium nitride and amorphous carbon is/are etched from the substrate. Other implementations and aspects are contemplated.
    Type: Application
    Filed: August 22, 2005
    Publication date: January 5, 2006
    Inventors: Garo Derderian, H. Manning
  • Publication number: 20060001072
    Abstract: This invention includes gated field effect devices, and methods of forming gated field effect devices. In one implementation, a gated field effect device includes a pair of source/drain regions having a channel region therebetween. A gate is received proximate the channel region between the source/drain regions. The gate has a gate width between the source/drain regions. A gate dielectric is received intermediate the channel region and the gate. The gate dielectric has at least two different regions along the width of the gate. The different regions are characterized by different materials which are effective to define the two different regions to have different dielectric constants k. Other aspects and implementations are contemplated.
    Type: Application
    Filed: June 30, 2005
    Publication date: January 5, 2006
    Inventors: Cem Basceri, H. Manning, Gurtej Sandhu, Kunal Parekh