Patents by Inventor H. Zhang

H. Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170213836
    Abstract: A vertical tunneling FET (TFET) provides low-power, high-speed switching performance for transistors having critical dimensions below 7 nm. The vertical TFET uses a gate-all-around (GAA) device architecture having a cylindrical structure that extends above the surface of a doped well formed in a silicon substrate. The cylindrical structure includes a lower drain region, a channel, and an upper source region, which are grown epitaxially from the doped well. The channel is made of intrinsic silicon, while the source and drain regions are doped in-situ. An annular gate surrounds the channel, capacitively controlling current flow through the channel from all sides. The source is electrically accessible via a front side contact, while the drain is accessed via a backside contact that provides low contact resistance and also serves as a heat sink. Reliability of vertical TFET integrated circuits is enhanced by coupling the vertical TFETs to electrostatic discharge (ESD) diodes.
    Type: Application
    Filed: April 7, 2017
    Publication date: July 27, 2017
    Inventor: John H. Zhang
  • Patent number: 9711649
    Abstract: Metal quantum dots are incorporated into doped source and drain regions of a MOSFET array to assist in controlling transistor performance by altering the energy gap of the semiconductor crystal. In a first example, the quantum dots are incorporated into ion-doped source and drain regions. In a second example, the quantum dots are incorporated into epitaxially doped source and drain regions.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: July 18, 2017
    Assignee: STMicroelectronics, Inc.
    Inventor: John H. Zhang
  • Publication number: 20170186170
    Abstract: Systems, apparatuses, and/or methods may provide for identifying a face of a user by extracting contour information from images of shadows cast on the face by a facial features illuminated by a controllable source of illumination. The source of illumination may be left, center, and right portions of the light emitting diode (LED) display on a smart phone, tablet, or notebook that has a forward-facing two-dimensional (2D) camera for obtaining the images. In one embodiment, the user is successively photographed under illumination provided using the left, the center, and the right portions of the LED display, providing shadows on the face from which identifying contour information may be extracted and/or determined.
    Type: Application
    Filed: December 24, 2015
    Publication date: June 29, 2017
    Inventors: Thomas A. Nugraha, Ramon C. Cancel Olmo, Daniel H. Zhang
  • Patent number: 9682230
    Abstract: An assembly for an implantable device can be made from PEEK and can incorporate one or more radiopaque agents and one or more elutable drug components into a polymeric lead tip. The assembly can be machined or injection molded and can be configured, for example, as a housing for an active fixation lead or as an electrode base supporting a foil electrode.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: June 20, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Steve H. Zhang, Bryan Clem, Daniel I. Codner, Arthur J. Foster, Peter J. Wolf
  • Publication number: 20170162711
    Abstract: Processes and overturned thin film device structures generally include a metal gate having a concave shape defined by three faces. The processes generally include forming the overturned thin film device structures such that the channel self-aligns to the metal gate and the contacts can be self-aligned to the sacrificial material.
    Type: Application
    Filed: September 8, 2016
    Publication date: June 8, 2017
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Yiheng Xu, John H. Zhang
  • Publication number: 20170162554
    Abstract: Self-aligned three dimensional vertically stacked chip stacks and processes for forming the same generally include two or more vertically stacked chips supported by a scaffolding structure, the scaffolding structure defined by a first scaffolding trench and at least one additional scaffolding trench, the first scaffolding trench comprising a bottom surface having a width and a sidewall having a height extending from the bottom surface to define a lowermost trench in a scaffolding layer, the at least one additional scaffolding trench overlaying the first scaffolding trench having a sidewall having a height and a width, wherein the width of the at least one scaffolding trench is greater than the first scaffolding trench width to define a first stair between the first scaffolding trench and the at least one additional trench; a first chip secured to the first scaffolding trench having a height less than the first scaffolding trench sidewall height; and at least one additional chip secured to and supported by the
    Type: Application
    Filed: December 2, 2015
    Publication date: June 8, 2017
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Yiheng Xu, John H. Zhang
  • Publication number: 20170148647
    Abstract: The present disclosure is directed to fluid filtering systems and methods for use during semiconductor processing. One or more embodiments are directed to fluid filtering systems and methods for filtering ions and particles from a fluid as the fluid is being provided to a semiconductor wafer processing tool, such as to a semiconductor wafer cleaning tool.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventors: John H. Zhang, Laertis Economikos, Adam Ticknor, Wei-Tsu Tseng
  • Patent number: 9659820
    Abstract: A method of forming a wavy line interconnect structure that accommodates small metal lines and enlarged diameter vias is disclosed. The enlarged diameter vias can be formed using a self-aligned dual damascene process without the need for a separate via lithography mask. The enlarged diameter vias make direct contact with at least three sides of the underlying metal lines, and can be aligned asymmetrically with respect to the metal line to increase the packing density of the metal pattern. The resulting vias have an aspect ratio that is relatively easy to fill, while the larger via footprint provides low via resistance. By allowing the via footprint to exceed the minimum size of the metal line width, a path is cleared for further process generations to continue shrinking metal lines to dimensions below 10 nm.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: May 23, 2017
    Assignees: International Business Machines Corporation, STMICROELECTRONICS, INC.
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Richard Stephen Wise, Akil K. Sutton, Terry Allen Spooner, Nicole A. Saulnier
  • Patent number: 9658523
    Abstract: A wavy line interconnect structure that accommodates small metal lines and large vias is disclosed. A lithography mask design used to pattern metal line trenches uses optical proximity correction (OPC) techniques to approximate wavy lines using rectangular opaque features. The large vias can be formed using a self-aligned dual damascene process without the need for a separate via lithography mask. Instead, a sacrificial layer allows etching of an underlying thick dielectric block, while protecting narrow features of the trenches that correspond to the metal line interconnects. The resulting vias have an aspect ratio that is relatively easy to fill, while the larger via footprint provides low via resistance. By lifting the shrink constraint for vias, thereby allowing the via footprint to exceed the minimum size of the metal line width, a path is cleared for further process generations to continue shrinking metal lines to dimensions below 10 nm.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: May 23, 2017
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Richard Stephen Wise, Terry Spooner, Nicole A. Saulnier
  • Patent number: 9660015
    Abstract: A method for making a semiconductor device may include forming a first dielectric layer above a semiconductor substrate, forming a first trench in the first dielectric layer, filling the first trench with electrically conductive material, removing upper portions of the electrically conductive material to define a lower conductive member with a recess thereabove, forming a filler dielectric material in the recess to define a second trench. The method may further include filling the second trench with electrically conductive material to define an upper conductive member, forming a second dielectric layer over the first dielectric layer and upper conductive member, forming a first via through the second dielectric layer and underlying filler dielectric material to the lower conductive member, and forming a second via through the second dielectric layer to the upper conductive member.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: May 23, 2017
    Assignee: STMicroelectronics, Inc.
    Inventor: John H. Zhang
  • Patent number: 9653585
    Abstract: A vertical tunneling FET (TFET) provides low-power, high-speed switching performance for transistors having critical dimensions below 7 nm. The vertical TFET uses a gate-all-around (GAA) device architecture having a cylindrical structure that extends above the surface of a doped well formed in a silicon substrate. The cylindrical structure includes a lower drain region, a channel, and an upper source region, which are grown epitaxially from the doped well. The channel is made of intrinsic silicon, while the source and drain regions are doped in-situ. An annular gate surrounds the channel, capacitively controlling current flow through the channel from all sides. The source is electrically accessible via a front side contact, while the drain is accessed via a backside contact that provides low contact resistance and also serves as a heat sink. Reliability of vertical TFET integrated circuits is enhanced by coupling the vertical TFETs to electrostatic discharge (ESD) diodes.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: May 16, 2017
    Assignee: STMicroelectronics, Inc.
    Inventor: John H. Zhang
  • Patent number: 9646939
    Abstract: Various embodiments facilitate die protection for an integrated circuit. In one embodiment, a multilayer structure is formed in multiple levels and along the edges of a die to prevent and detect damages to the die. The multilayer structure includes a support layer, a first plurality of dielectric pillars overlying the support layer, a metal layer that fills spaces between the first plurality of dielectric pillars, an insulation layer overlying the first plurality of dielectric pillars and the metal layer, a second plurality of dielectric pillars overlying the insulation layer, and a second metal layer that fills spaces between the second plurality of dielectric pillars.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: May 9, 2017
    Assignees: International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Byoung Youp Kim, Walter Kleemeier
  • Patent number: 9640636
    Abstract: One illustrative method disclosed herein includes, among other things, forming an initial vertically oriented channel semiconductor structure having a first height above a substrate, forming a sacrificial spacer structure adjacent the initial vertically oriented channel semiconductor structure and, with the sacrificial spacer in position, performing at least one process operation to define a self-aligned bottom source/drain region for the device that is self-aligned with respect to the sacrificial spacer structure, forming an isolation region in the trench and forming a bottom source/drain electrode above the isolation region. The method also includes removing the sacrificial spacer structure and forming a bottom spacer material around the vertically oriented channel semiconductor structure above the bottom source/drain electrode.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: May 2, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Steven J. Bentley, John H. Zhang, Kwan-Yong Lim, Hiroaki Niimi
  • Patent number: 9633986
    Abstract: A sequence of semiconductor processing steps permits formation of both vertical and horizontal nanometer-scale serpentine resistors and parallel plate capacitors within a common structure. The method takes advantage of a CMP process non-uniformity in which the CMP polish rate of an insulating material varies according to a certain underlying topography. By establishing such topography underneath a layer of the insulating material, different film thicknesses of the insulator can be created in different areas by leveraging differential polish rates, thereby avoiding the use of a lithography mask. In one embodiment, a plurality of resistors and capacitors can be formed as a compact integrated structure within a common dielectric block, using a process that requires only two mask layers. The resistors and capacitors thus formed as a set of integrated circuit elements are suitable for use as microelectronic fuses and antifuses, respectively, to protect underlying microelectronic circuits.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: April 25, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC.
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Edem Wornyo
  • Publication number: 20170110317
    Abstract: A brush-cleaning apparatus is disclosed for use in cleaning a semiconductor wafer after polishing. Embodiments of the brush-cleaning apparatus implemented with a multi-branch chemical dispensing unit are applied beneficially to clean semiconductor wafers, post-polish, using a hybrid cleaning method. An exemplary hybrid cleaning method employs a two-chemical sequence in which first and second chemical treatment modules are separate from one another, and are followed by a pH-neutralizing—rinse that occurs in a treatment module separate from the first and second chemical treatment modules. Implementation of such hybrid methods is facilitated by the multi-branch chemical dispensing unit, which provides separate chemical lines to different chemical treatment modules, and dispenses chemical to at least four different areas of each wafer during single-wafer processing in an upright orientation.
    Type: Application
    Filed: December 27, 2016
    Publication date: April 20, 2017
    Inventor: John H. Zhang
  • Publication number: 20170092778
    Abstract: A vacuum channel transistor having a vertical gate-all-around (GAA) architecture provides high performance for high-frequency applications, and features a small footprint compared with existing planar devices. The GAA vacuum channel transistor features stacked, tapered source and drain regions that are formed by notching a doped silicon pillar using a lateral oxidation process. A temporary support structure is provided for the pillar during formation of the vacuum channel. Performance of the GAA vacuum channel transistor can be tuned by replacing air in the channel with other gases such as helium, neon, or argon. A threshold voltage of the GAA vacuum channel transistor can be adjusted by altering dopant concentrations of the silicon pillar from which the source and drain regions are formed.
    Type: Application
    Filed: September 29, 2016
    Publication date: March 30, 2017
    Inventor: John H. ZHANG
  • Patent number: 9607893
    Abstract: Disclosed are embodiments of a method, wherein metal lines and vias of an integrated circuit IC) metal level of are formed without requiring separate cut masks to pattern the trenches for the metal lines and the via holes for the vias. Trenches are formed in an upper portion of a dielectric layer. Each trench is filled with a sacrificial material. A mask is formed above the dielectric layer and patterned with one or more openings, each opening exposing one or more segments of the sacrificial material in one or more of the trenches, respectively. A sidewall spacer is formed in each opening and a selective etch process is performed to form one or more via holes that extend through the sacrificial material and through the lower portion of the dielectric layer below. Subsequently, all the sacrificial material is removed and metal is deposited, thereby forming self-aligned metal lines and via(s).
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: March 28, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John H. Zhang, Carl J. Radens, Lawrence A. Clevenger
  • Patent number: 9607864
    Abstract: The present disclosure is directed to fluid filtering systems and methods for use during semiconductor processing. One or more embodiments are directed to fluid filtering systems and methods for filtering ions and particles from a fluid as the fluid is being provided to a semiconductor wafer processing tool, such as to a semiconductor wafer cleaning tool.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: March 28, 2017
    Assignees: STMicroelectronics, Inc., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John H. Zhang, Laertis Economikos, Wei-Tsu Tseng, Adam Ticknor
  • Patent number: 9601630
    Abstract: Metal quantum dots are incorporated into doped source and drain regions of a MOSFET array to assist in controlling transistor performance by altering the energy gap of the semiconductor crystal. In a first example, the quantum dots are incorporated into ion-doped source and drain regions. In a second example, the quantum dots are incorporated into epitaxially doped source and drain regions.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: March 21, 2017
    Assignee: STMicroelectronics, Inc.
    Inventor: John H. Zhang
  • Publication number: 20170054967
    Abstract: A depth sensing multiple camera system is described that uses depth sensing cameras. In one example, the camera system includes a primary auto-focus camera to capture an image of a scene at a first focus distance, the primary camera having a fixed field of view through different focus distances, a secondary auto-focus camera to capture an image of the same scene at a second focus distance, the secondary camera having a fixed field of view through different focus distances, and a processor having a port coupled to the primary camera to receive images from the primary camera and also coupled to the secondary camera to receive images from the secondary camera and to determine a depth map for the captured primary camera image using the captured secondary camera image.
    Type: Application
    Filed: July 26, 2016
    Publication date: February 23, 2017
    Applicant: Intel Corporation
    Inventors: Daniel H. Zhang, Richmond Hicks