Patents by Inventor H. Zhang

H. Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9548222
    Abstract: A brush-cleaning apparatus is disclosed for use in cleaning a semiconductor wafer after polishing. Embodiments of the brush-cleaning apparatus implemented with a multi-branch chemical dispensing unit are applied beneficially to clean semiconductor wafers, post-polish, using a hybrid cleaning method. An exemplary hybrid cleaning method employs a two-chemical sequence in which first and second chemical treatment modules are separate from one another, and are followed by a pH-neutralizing-rinse that occurs in a treatment module separate from the first and second chemical treatment modules. Implementation of such hybrid methods is facilitated by the multi-branch chemical dispensing unit, which provides separate chemical lines to different chemical treatment modules, and dispenses chemical to at least four different areas of each wafer during single-wafer processing in an upright orientation.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: January 17, 2017
    Assignee: STMicroelectronics, Inc.
    Inventor: John H. Zhang
  • Publication number: 20170011971
    Abstract: Methods and devices for enhancing mobility of charge carriers. An integrated circuit may include semiconductor devices of two types. The first type of device may include a metallic gate and a channel strained in a first manner. The second type of device may include a metallic gate and a channel strained in a second manner. The gates may include, collectively, three or fewer metallic materials. The gates may share a same metallic material. A method of forming the semiconductor devices on an integrated circuit may include depositing first and second metallic layers in first and second regions of the integrated circuit corresponding to the first and second gates, respectively.
    Type: Application
    Filed: September 26, 2016
    Publication date: January 12, 2017
    Inventors: John H. ZHANG, Chengyu NIU, Heng YANG
  • Publication number: 20170005106
    Abstract: A modular interconnect structure facilitates building complex, yet compact, integrated circuits from vertical GAA FETs. The modular interconnect structure includes annular metal contacts to the transistor terminals, sectors of stacked discs extending radially outward from the vertical nanowires, and vias in the form of rods. Extension tabs mounted onto the radial sector interconnects permit signals to fan out from each transistor terminal. Adjacent interconnects are linked by linear segments. Unlike conventional integrated circuits, the modular interconnects as described herein are formed at the same time as the transistors. Vertical GAA NAND and NOR gates provide building blocks for creating all types of logic gates to carry out any desired Boolean logic function. Stacked vertical GAA FETs are made possible by the modular interconnect structure. The modular interconnect structure permits a variety of specialized vertical GAA devices to be integrated on a silicon substrate using standard CMOS processes.
    Type: Application
    Filed: June 23, 2016
    Publication date: January 5, 2017
    Inventor: John H. Zhang
  • Publication number: 20170005012
    Abstract: An analog integrated circuit is disclosed in which short channel transistors are stacked on top of long channel transistors, vertically separated by an insulating layer. With such a design, it is possible to produce a high density, high power, and high performance analog integrated circuit chip including both short and long channel devices that are spaced far enough apart from one another to avoid crosstalk. In one embodiment, the transistors are FinFETs and the long channel devices are multi-gate FinFETs. In one embodiment, single and dual damascene devices are combined in a multi-layer integrated circuit cell. The cell may contain various combinations and configurations of the short and long-channel devices. A high density cell can be made by simply shrinking the dimensions of the cells and replicating two or more cells in the same size footprint as the original cell.
    Type: Application
    Filed: August 16, 2016
    Publication date: January 5, 2017
    Inventors: Qing Liu, John H. Zhang
  • Patent number: 9536793
    Abstract: Methods for self-aligned gate-first VFETs using gate-spacer recess and the resulting devices are disclosed.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: January 3, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John H. Zhang, Kwan-Yong Lim, Steven John Bentley, Chanro Park
  • Publication number: 20160380118
    Abstract: An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 ?m2.
    Type: Application
    Filed: September 8, 2016
    Publication date: December 29, 2016
    Inventors: Qing LIU, John H. ZHANG
  • Patent number: 9530866
    Abstract: Forming a first sidewall spacer adjacent a vertically oriented channel semiconductor structure (“VCS structure’) and adjacent a cap layer, performing at least one planarization process so as to planarize an insulating material and expose an upper surface of the cap layer and an upper surface of the first spacer and removing a portion of the first spacer and an entirety of the cap layer so as to thereby expose an upper surface of the VCS structure and define a spacer/contact cavity above the VCS structure and the first spacer. The method also includes forming a second spacer in the spacer/contact cavity, forming a top source/drain region in the VCS structure and forming a top source/drain contact within the spacer/contact cavity that is conductively coupled to the top source/drain region, wherein the conductive contact physically contacts the second spacer in the spacer/contact cavity.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: December 27, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: John H. Zhang, Carl Radens, Steven J. Bentley, Brian A. Cohen, Kwan-Yong Lim
  • Patent number: 9530863
    Abstract: One illustrative method disclosed herein includes, among other things, forming a vertically oriented channel semiconductor structure, forming a layer of a bottom spacer material around the vertically oriented channel semiconductor structure and forming a sacrificial material layer above the layer of a bottom spacer material. In this example, the method further includes forming a sidewall spacer adjacent the vertically oriented channel semiconductor structure and above an upper surface of the sacrificial material layer, removing the sacrificial material layer so as to define a replacement gate cavity between a bottom surface of the sidewall spacer and the layer of a bottom spacer material, and forming a replacement gate structure in the replacement gate cavity.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: December 27, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: John H. Zhang, Carl Radens, Steven J. Bentley, Brian A. Cohen, Kwan-Yong Lim
  • Publication number: 20160365456
    Abstract: A semi-floating gate transistor is implemented as a vertical FET built on a silicon substrate, wherein the source, drain, and channel are vertically aligned, on top of one another. Current flow between the source and the drain is influenced by a control gate and a semi-floating gate. Front side contacts can be made to each one of the source, drain, and control gate terminals of the vertical semi-floating gate transistor. The vertical semi-floating gate FET further includes a vertical tunneling FET and a vertical diode. Fabrication of the vertical semi-floating gate FET is compatible with conventional CMOS manufacturing processes, including a replacement metal gate process. Low-power operation allows the vertical semi-floating gate FET to provide a high current density compared with conventional planar devices.
    Type: Application
    Filed: June 15, 2015
    Publication date: December 15, 2016
    Inventors: Qing Liu, John H. Zhang
  • Patent number: 9496415
    Abstract: Processes and overturned thin film device structures generally include a metal gate having a concave shape defined by three faces. The processes generally include forming the overturned thin film device structures such that the channel self-aligns to the metal gate and the contacts can be self-aligned to the sacrificial material.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: November 15, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Yiheng Xu, John H. Zhang
  • Patent number: 9466452
    Abstract: An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 ?m2.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: October 11, 2016
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Qing Liu, John H. Zhang
  • Publication number: 20160293589
    Abstract: A sequence of semiconductor processing steps permits formation of both vertical and horizontal nanometer-scale serpentine resistors and parallel plate capacitors within a common structure. The method takes advantage of a CMP process non-uniformity in which the CMP polish rate of an insulating material varies according to a certain underlying topography. By establishing such topography underneath a layer of the insulating material, different film thicknesses of the insulator can be created in different areas by leveraging differential polish rates, thereby avoiding the use of a lithography mask. In one embodiment, a plurality of resistors and capacitors can be formed as a compact integrated structure within a common dielectric block, using a process that requires only two mask layers. The resistors and capacitors thus formed as a set of integrated circuit elements are suitable for use as microelectronic fuses and antifuses, respectively, to protect underlying microelectronic circuits.
    Type: Application
    Filed: June 7, 2016
    Publication date: October 6, 2016
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Edem Wornyo
  • Publication number: 20160293756
    Abstract: A tunneling transistor is implemented in silicon, using a FinFET device architecture. The tunneling FinFET has a non-planar, vertical, structure that extends out from the surface of a doped drain formed in a silicon substrate. The vertical structure includes a lightly doped fin defined by a subtractive etch process, and a heavily-doped source formed on top of the fin by epitaxial growth. The drain and channel have similar polarity, which is opposite that of the source. A gate abuts the channel region, capacitively controlling current flow through the channel from opposite sides. Source, drain, and gate terminals are all electrically accessible via front side contacts formed after completion of the device. Fabrication of the tunneling FinFET is compatible with conventional CMOS manufacturing processes, including replacement metal gate and self-aligned contact processes. Low-power operation allows the tunneling FinFET to provide a high current density compared with conventional planar devices.
    Type: Application
    Filed: March 31, 2015
    Publication date: October 6, 2016
    Inventors: Qing LIU, John H. ZHANG
  • Publication number: 20160293371
    Abstract: An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 ?m2.
    Type: Application
    Filed: March 31, 2015
    Publication date: October 6, 2016
    Inventors: Qing LIU, John H. ZHANG
  • Publication number: 20160293739
    Abstract: A vertical tunneling FET (TFET) provides low-power, high-speed switching performance for transistors having critical dimensions below 7 nm. The vertical TFET uses a gate-all-around (GAA) device architecture having a cylindrical structure that extends above the surface of a doped well formed in a silicon substrate. The cylindrical structure includes a lower drain region, a channel, and an upper source region, which are grown epitaxially from the doped well. The channel is made of intrinsic silicon, while the source and drain regions are doped in-situ. An annular gate surrounds the channel, capacitively controlling current flow through the channel from all sides. The source is electrically accessible via a front side contact, while the drain is accessed via a backside contact that provides low contact resistance and also serves as a heat sink. Reliability of vertical TFET integrated circuits is enhanced by coupling the vertical TFETs to electrostatic discharge (ESD) diodes.
    Type: Application
    Filed: June 8, 2016
    Publication date: October 6, 2016
    Inventor: John H. ZHANG
  • Patent number: 9437453
    Abstract: CMP selectivity, removal rate, and uniformity are controlled both locally and globally by altering electric charge at the wafer surface. Surface charge characterization is performed by an on-board metrology module. Based on a charge profile map, the wafer can be treated in an immersion bath to impart a more positive or negative charge overall, or to neutralize the entire wafer before the CMP operation is performed. If charge hot spots are detected on the wafer, a charge pencil can be used to neutralize localized areas. One type of charge pencil bears a tapered porous polymer tip that is placed in close proximity to the wafer surface. Films present on the wafer absorb ions from, or surrender ions to, the charge pencil tip, by electrostatic forces. The charge pencil can be incorporated into a CMP system to provide an in-situ treatment prior to the planarization step or the slurry removal step.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: September 6, 2016
    Assignee: STMicroelectronics, Inc.
    Inventor: John H. Zhang
  • Publication number: 20160254343
    Abstract: A method for making a semiconductor device may include forming a first dielectric layer above a semiconductor substrate, forming a first trench in the first dielectric layer, filling the first trench with electrically conductive material, removing upper portions of the electrically conductive material to define a lower conductive member with a recess thereabove, forming a filler dielectric material in the recess to define a second trench. The method may further include filling the second trench with electrically conductive material to define an upper conductive member, forming a second dielectric layer over the first dielectric layer and upper conductive member, forming a first via through the second dielectric layer and underlying filler dielectric material to the lower conductive member, and forming a second via through the second dielectric layer to the upper conductive member.
    Type: Application
    Filed: March 28, 2016
    Publication date: September 1, 2016
    Inventor: John H. ZHANG
  • Publication number: 20160247722
    Abstract: A wavy line interconnect structure that accommodates small metal lines and enlarged diameter vias is disclosed. The enlarged diameter vias can be formed using a self-aligned dual damascene process without the need for a separate via lithography mask. The enlarged diameter vias make direct contact with at least three sides of the underlying metal lines, and can be aligned asymmetrically with respect to the metal line to increase the packing density of the metal pattern. The resulting vias have an aspect ratio that is relatively easy to fill, while the larger via footprint provides low via resistance. An interconnect structure having enlarged diameter vias can also feature air gaps to reduce the chance of dielectric breakdown. By allowing the via footprint to exceed the minimum size of the metal line width, a path is cleared for further process generations to continue shrinking metal lines to dimensions below 10 nm.
    Type: Application
    Filed: May 2, 2016
    Publication date: August 25, 2016
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Richard Stephen Wise, Akil K. Sutton, Terry Allen Spooner, Nicole A. Saulnier
  • Patent number: 9426450
    Abstract: A depth sensing multiple camera system is described that uses depth sensing cameras. In one example, the camera system includes a primary auto-focus camera to capture an image of a scene at a first focus distance, the primary camera having a fixed field of view through different focus distances, a secondary auto-focus camera to capture an image of the same scene at a second focus distance, the secondary camera having a fixed field of view through different focus distances, and a processor having a first port coupled to the primary camera to receive images from the primary camera and a second port to receive images from the secondary camera and to determine a depth map for the captured primary camera image using the captured secondary camera image.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: August 23, 2016
    Assignee: Intel Corporation
    Inventors: Daniel H. Zhang, Richmond Hicks
  • Patent number: 9425213
    Abstract: An analog integrated circuit is disclosed in which short channel transistors are stacked on top of long channel transistors, vertically separated by an insulating layer. With such a design, it is possible to produce a high density, high power, and high performance analog integrated circuit chip including both short and long channel devices that are spaced far enough apart from one another to avoid crosstalk. In one embodiment, the transistors are FinFETs and the long channel devices are multi-gate FinFETs. In one embodiment, single and dual damascene devices are combined in a multi-layer integrated circuit cell. The cell may contain various combinations and configurations of the short and long-channel devices. A high density cell can be made by simply shrinking the dimensions of the cells and replicating two or more cells in the same size footprint as the original cell.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: August 23, 2016
    Assignee: STMicroelectronics, Inc.
    Inventors: Qing Liu, John H. Zhang