Patents by Inventor Hai-Dang Trinh

Hai-Dang Trinh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12137572
    Abstract: Ferroelectric stacks are disclosed herein that can improve retention performance of ferroelectric memory devices. An exemplary ferroelectric stack has a ferroelectric switching layer (FSL) stack disposed between a first electrode and a second electrode. The ferroelectric stack includes a barrier layer disposed between a first FSL and a second FSL, where a first crystalline condition of the barrier layer is different than a second crystalline condition of the first FSL and/or the second FSL. In some embodiments, the first crystalline condition is an amorphous phase, and the second crystalline condition is an orthorhombic phase. In some embodiments, the first FSL and/or the second FSL include a first metal oxide, and the barrier layer includes a second metal oxide. The ferroelectric stack can be a ferroelectric capacitor, a portion of a transistor, and/or connected to a transistor in a ferroelectric memory device to provide data storage in a non-volatile manner.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: November 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang Wei, Tzu-Yu Lin, Bi-Shen Lee, Hai-Dang Trinh, Hsing-Lien Lin, Hsun-Chung Kuang
  • Patent number: 12132066
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor. The image sensor includes and image sensor element disposed within a substrate. The substrate comprises a first material. The image sensor element includes an active layer comprising a second material different from the first material. A buffer layer is disposed between the active layer and the substrate. The buffer layer extends along outer sidewalls and a bottom surface of the active layer. A capping structure overlies the active layer. Outer sidewalls of the active layer are spaced laterally between outer sidewalls of the capping structure such that the capping structure continuously extends over outer edges of the active layer.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: October 29, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Kai Lan, Hai-Dang Trinh, Hsun-Chung Kuang
  • Publication number: 20240357835
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a first interconnect dielectric layer over a substrate and surrounding a first interconnect. A second interconnect dielectric layer is over the first interconnect dielectric layer and surrounds at least a part of a second interconnect. A bottom electrode is over the substrate, a top electrode is over the bottom electrode, and a ferroelectric layer is between the bottom electrode and the top electrode. The ferroelectric layer includes a lower horizontally extending portion, an upper horizontally extending portion arranged above the lower horizontally extending portion, and a vertically extending portion coupling the lower horizontally extending portion and the upper horizontally extending portion. The vertically extending portion extends through the first interconnect dielectric layer and the second interconnect dielectric layer.
    Type: Application
    Filed: July 1, 2024
    Publication date: October 24, 2024
    Inventors: Hai-Dang Trinh, Yi Yang Wei, Bi-Shen Lee, Fa-Shen Jiang, Hsun-Chung Kuang, Cheng-Yuan Tsai
  • Publication number: 20240357840
    Abstract: A memory device includes a field effect transistor and a variable-capacitance capacitor. A gate structure includes a gate dielectric and an intermediate electrode. The variable-capacitance capacitor includes a lower capacitor plate comprising the intermediate electrode, an upper capacitor plate comprising a control gate electrode, and a variable-capacitance node dielectric and including an electrical-field-programmable metal oxide material. The electrical-field-programmable metal oxide material provides a variable effective dielectric constant, and a data bit may be stored as a dielectric state of the variable-capacitance node dielectric in the memory device. The variable-capacitance node dielectric provides reversible electrical field-dependent resistivity modulation, or reversible electrical field-dependent movement of metal atoms therein.
    Type: Application
    Filed: June 28, 2024
    Publication date: October 24, 2024
    Inventors: Fa-Shen JIANG, Hsia-Wei CHEN, Hai-Dang TRINH, Hsun-Chung KUANG
  • Patent number: 12127483
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) chip comprising a memory cell with a sidewall spacer, and/or an etch stop layer, doped to reduce charge accumulation at an interface between the sidewall spacer and the etch stop layer. The memory cell comprises a bottom electrode, a data storage element overlying the bottom electrode, and a top electrode overlying the data storage element. The sidewall spacer overlies the bottom electrode on a common sidewall formed by the data storage element and the top electrode, and the etch stop layer lines the sidewall spacer. The sidewall spacer and the etch stop layer directly contact at the interface and form an electric dipole at the interface. The doping to reduce charge accumulation reduces an electric field produced by the electric dipole, thereby reducing the effect of the electric field on the memory cell.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: October 22, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bi-Shen Lee, Hai-Dang Trinh, Hsun-Chung Kuang, Cheng-Yuan Tsai
  • Patent number: 12102019
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. A first conductive structure overlies a substrate. A second conductive structure overlies the first conductive structure. A data storage structure is disposed between the first and second conductive structures. The data storage structure includes a first dielectric layer, a second dielectric layer, and a third dielectric layer. Respective bandgaps of the first, second, and third dielectric layers are different from one another.
    Type: Grant
    Filed: June 15, 2023
    Date of Patent: September 24, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Cheng-Yuan Tsai, Tzu-Chung Tsai, Fa-Shen Jiang
  • Patent number: 12080738
    Abstract: An image sensor device is disclosed. The image sensor device includes: a substrate having a front surface and a back surface; a radiation-sensing region formed in the substrate; an opening extending from the back surface of the substrate into the substrate; a first metal oxide film including a first metal, the first metal oxide film being formed on an interior surface of the opening; and a second metal oxide film including a second metal, the second metal oxide film being formed over the first metal oxide film; wherein the electronegativity of the first metal is greater than the electronegativity of the second metal. An associated fabricating method is also disclosed.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: September 3, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chih-Yu Lai, Min-Ying Tsai, Yeur-Luen Tu, Hai-Dang Trinh, Cheng-Yuan Tsai
  • Patent number: 12075636
    Abstract: A memory device includes a field effect transistor and a variable-capacitance capacitor. A gate structure includes a gate dielectric and an intermediate electrode. The variable-capacitance capacitor includes a lower capacitor plate comprising the intermediate electrode, an upper capacitor plate comprising a control gate electrode, and a variable-capacitance node dielectric and including an electrical-field-programmable metal oxide material. The electrical-field-programmable metal oxide material provides a variable effective dielectric constant, and a data bit may be stored as a dielectric state of the variable-capacitance node dielectric in the memory device. The variable-capacitance node dielectric provides reversible electrical field-dependent resistivity modulation, or reversible electrical field-dependent movement of metal atoms therein.
    Type: Grant
    Filed: July 25, 2023
    Date of Patent: August 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Fa-Shen Jiang, Hsia-Wei Chen, Hai-Dang Trinh, Hsun-Chung Kuang
  • Patent number: 12075626
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes one or more interconnect dielectric layers arranged over a substrate. A bottom electrode is disposed over a conductive structure and extends through the one or more interconnect dielectric layers. A top electrode is disposed over the bottom electrode. A ferroelectric layer is disposed between and contacts the bottom electrode and the top electrode. The ferroelectric layer includes a first lower horizontal portion, a first upper horizontal portion arranged above the first lower horizontal portion, and a first sidewall portion coupling the first lower horizontal portion to the first upper horizontal portion.
    Type: Grant
    Filed: June 9, 2023
    Date of Patent: August 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Yi Yang Wei, Bi-Shen Lee, Fa-Shen Jiang, Hsun-Chung Kuang, Cheng-Yuan Tsai
  • Patent number: 12069971
    Abstract: The present disclosure relates to a resistive random access memory (RRAM) device. The RRAM device includes a first electrode over a substrate and a second electrode over the substrate. A data storage structure is disposed between the first electrode and the second electrode. The data storage structure includes a first metal and a second metal. The first metal has a peak concentration at a first distance from the first electrode and the second metal has a peak concentration at a second distance from the first electrode. The first distance is different than the second distance.
    Type: Grant
    Filed: May 8, 2023
    Date of Patent: August 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Cheng-Yuan Tsai, Hsing-Lien Lin, Wen-Ting Chu
  • Patent number: 12035537
    Abstract: In some embodiments, the present disclosure relates to a method of forming an integrated chip. The method includes forming a lower electrode layer over a substrate, and an un-patterned amorphous initiation layer over the lower electrode layer. An intermediate ferroelectric material layer is formed have a substantially uniform amorphous phase on the un-patterned amorphous initiation layer. An anneal process is performed to change the intermediate ferroelectric material layer to a ferroelectric material layer having a substantially uniform orthorhombic crystalline phase. An upper electrode layer is formed over the ferroelectric material layer. One or more patterning processes are performed on the upper electrode layer, the ferroelectric material layer, the un-patterned amorphous initiation layer, and the lower electrode layer to form a ferroelectric memory device. An upper ILD layer is formed over the ferroelectric memory device, and an upper interconnect is formed to contact the ferroelectric memory device.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: July 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bi-Shen Lee, Yi Yang Wei, Hai-Dang Trinh, Hsun-Chung Kuang, Cheng-Yuan Tsai
  • Publication number: 20240224822
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a bottom electrode structure disposed over a lower interconnect within a lower inter-level dielectric (ILD) layer over a substrate. The bottom electrode structure has an upper surface including a noble metal. A diffusion barrier layer is over the bottom electrode structure, a data storage structure is over the diffusion barrier layer, and a top electrode structure is over the data storage structure. The diffusion barrier layer is configured to mitigate a diffusion of noble metal atoms from the bottom electrode structure to the data storage structure.
    Type: Application
    Filed: March 13, 2024
    Publication date: July 4, 2024
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Fa-Shen Jiang
  • Publication number: 20240203472
    Abstract: Various embodiments of the present disclosure are directed towards a memory device. The memory device has a first transistor having a first source/drain and a second source/drain, where the first source/drain and the second source/drain are disposed in a semiconductor substrate. A dielectric structure is disposed over the semiconductor substrate. A first memory cell is disposed in the dielectric structure and over the semiconductor substrate, where the first memory cell has a first electrode and a second electrode, where the first electrode of the first memory cell is electrically coupled to the first source/drain of the first transistor. A second memory cell is disposed in the dielectric structure and over the semiconductor substrate, where the second memory cell has a first electrode and a second electrode, where the first electrode of the second memory cell is electrically coupled to the second source/drain of the first transistor.
    Type: Application
    Filed: February 28, 2024
    Publication date: June 20, 2024
    Inventors: Fa-Shen Jiang, Hsia-Wei Chen, Hsun-Chung Kuang, Hai-Dang Trinh, Cheng-Yuan Tsai
  • Patent number: 11991937
    Abstract: A semiconductor device includes a bottom electrode, a top electrode over the bottom electrode, a switching layer between the bottom electrode and the top electrode, wherein the switching layer is configured to store data, a capping layer in contact with the switching layer, wherein the capping layer is configured to extract active metal ions from the switching layer, an ion reservoir region formed in the capping layer, a diffusion barrier layer between the bottom electrode and the switching layer, wherein the diffusion barrier layer includes palladium (Pd), cobalt (Co), or a combination thereof and is configured to obstruct diffusion of the active metal ions between the switching layer and the bottom electrode, and the diffusion layer has a concaved top surface, and a passivation layer covering a portion of the top electrode, and wherein the passivation layer directly contacts a top surface of the switching layer.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: May 21, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hai-Dang Trinh, Hsing-Lien Lin, Fa-Shen Jiang
  • Publication number: 20240138272
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a first conductive structure over a substrate. A data storage structure overlies the first conductive structure. The data storage structure comprises a first dielectric layer on the first conductive structure and a second dielectric layer on the first dielectric layer. The first dielectric layer comprises a dielectric material and a first dopant having a concentration that changes from a top surface of the first dielectric layer in a direction towards the first conductive structure. A second conductive structure overlies the data storage structure.
    Type: Application
    Filed: January 3, 2024
    Publication date: April 25, 2024
    Inventors: Fa-Shen Jiang, Cheng-Yuan Tsai, Hai-Dang Trinh, Hsing-Lien Lin, Hsun-Chung Kuang, Bi-Shen Lee
  • Patent number: 11967611
    Abstract: A multilayer structure, a capacitor structure and an electronic device are provided. The multilayer structure includes a first dielectric layer, a second dielectric layer and an intermediate dielectric layer. The intermediate dielectric layer is disposed between the first dielectric layer and the second dielectric layer. A material of the intermediate dielectric layer is represented by a formula of AxB1-xO, wherein A includes hafnium (Hf), zirconium (Zr), lanthanum (La) or tantalum (Ta), B includes lanthanum (La), aluminum (Al) or tantalum (Ta), A is different from B, O is oxygen, and x is a number less than 1 and greater than 0.
    Type: Grant
    Filed: May 30, 2022
    Date of Patent: April 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hai-Dang Trinh, Yi Yang Wei, Fa-Shen Jiang, Bi-Shen Lee, Hsun-Chung Kuang
  • Patent number: 11961545
    Abstract: Various embodiments of the present disclosure are directed towards a memory device. The memory device has a first transistor having a first source/drain and a second source/drain, where the first source/drain and the second source/drain are disposed in a semiconductor substrate. A dielectric structure is disposed over the semiconductor substrate. A first memory cell is disposed in the dielectric structure and over the semiconductor substrate, where the first memory cell has a first electrode and a second electrode, where the first electrode of the first memory cell is electrically coupled to the first source/drain of the first transistor. A second memory cell is disposed in the dielectric structure and over the semiconductor substrate, where the second memory cell has a first electrode and a second electrode, where the first electrode of the second memory cell is electrically coupled to the second source/drain of the first transistor.
    Type: Grant
    Filed: December 7, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fa-Shen Jiang, Hsia-Wei Chen, Hsun-Chung Kuang, Hai-Dang Trinh, Cheng-Yuan Tsai
  • Patent number: 11963468
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a bottom electrode disposed over one or more interconnects and a diffusion barrier layer on the bottom electrode. The diffusion barrier layer has an inner upper surface that is arranged laterally between and vertically below an outer upper surface of the diffusion barrier film. The outer upper surface wraps around the inner upper surface in a top-view of the diffusion barrier layer. A data storage structure is separated from the bottom electrode by the diffusion barrier layer. A top electrode is arranged over the data storage structure.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Fa-Shen Jiang
  • Publication number: 20240099022
    Abstract: Various embodiments of the present application are directed toward an integrated chip (IC). The IC comprises a dielectric structure disposed over a substrate. A phase change material (PCM) structure is disposed over the dielectric structure. A first conductive structure and a second conductive structure are disposed over and electrically coupled to the PCM structure. A heating structure is disposed in the dielectric structure and laterally between the first conductive structure and the second conductive structure. The heating structure has a first surface and a second surface opposite the first surface. The first surface faces the PCM structure. The first surface has a first width and the second surface has a second width that is greater than the first width.
    Type: Application
    Filed: January 3, 2023
    Publication date: March 21, 2024
    Inventors: Hai-Dang Trinh, Fu-Ting Sung
  • Publication number: 20240074217
    Abstract: A memory device includes a field effect transistor and a variable-capacitance capacitor. A gate structure includes a gate dielectric and an intermediate electrode. The variable-capacitance capacitor includes a lower capacitor plate comprising the intermediate electrode, an upper capacitor plate comprising a control gate electrode, and a variable-capacitance node dielectric and including an electrical-field-programmable metal oxide material. The electrical-field-programmable metal oxide material provides a variable effective dielectric constant, and a data bit may be stored as a dielectric state of the variable-capacitance node dielectric in the memory device. The variable-capacitance node dielectric provides reversible electrical field-dependent resistivity modulation, or reversible electrical field-dependent movement of metal atoms therein.
    Type: Application
    Filed: November 10, 2023
    Publication date: February 29, 2024
    Inventors: Fa-Shen JIANG, Hsia-Wei CHEN, Hai-Dang TRINH, Hsun-Chung KUANG