Patents by Inventor Hai-Dang Trinh

Hai-Dang Trinh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11737280
    Abstract: In some embodiments, the present disclosure relates to a memory device including a semiconductor substrate, a first electrode disposed over the semiconductor substrate, a ferroelectric layer disposed between the first electrode and the semiconductor substrate, and a first stressor layer separating the first electrode from the ferroelectric layer. The first stressor layer has a coefficient of thermal expansion greater than that of the ferroelectric layer.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: August 22, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bi-Shen Lee, Tzu-Yu Lin, Yi-Yang Wei, Hai-Dang Trinh, Hsun-Chung Kuang, Cheng-Yuan Tsai
  • Patent number: 11723212
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes one or more interconnect dielectric layers arranged over a substrate. A bottom electrode is disposed over a conductive structure and extends through the one or more interconnect dielectric layers. A top electrode is disposed over the bottom electrode. A ferroelectric layer is disposed between and contacts the bottom electrode and the top electrode. The ferroelectric layer includes a first lower horizontal portion, a first upper horizontal portion arranged above the first lower horizontal portion, and a first sidewall portion and coupling the first lower horizontal portion to the first upper horizontal portion.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: August 8, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Yi Yang Wei, Bi-Shen Lee, Fa-Shen Jiang, Hsun-Chung Kuang, Cheng-Yuan Tsai
  • Patent number: 11716913
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip. The method includes forming a lower conductive structure over a substrate. A data storage structure is formed on the lower conductive structure. A bandgap of the data storage structure discretely increases or decreases at least two times from a top surface of the data storage structure in a direction towards the substrate. An upper conductive structure is formed on the data storage structure.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: August 1, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Cheng-Yuan Tsai, Tzu-Chung Tsai, Fa-Shen Jiang
  • Patent number: 11683999
    Abstract: The present disclosure relates to a memory device. The memory device includes an access device arranged on or within a substrate and coupled to a word-line and a source line. A plurality of lower interconnects are disposed within a lower dielectric structure over the substrate. A first electrode is coupled to the plurality of lower interconnects. The plurality of lower interconnects couple the access device to the first electrode. A second electrode is over the first electrode. One or more upper interconnects are disposed within an upper dielectric structure laterally surrounding the second electrode. The one or more upper interconnects couple the second electrode to a bit-line. A data storage structure is disposed between the first electrode and the second electrode. The data storage structure includes one or more metals having non-zero concentrations that change as a distance from the substrate varies.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: June 20, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Cheng-Yuan Tsai, Hsing-Lien Lin, Wen-Ting Chu
  • Patent number: 11665909
    Abstract: A method includes forming a bottom electrode layer, and depositing a first ferroelectric layer over the bottom electrode layer. The first ferroelectric layer is amorphous. A second ferroelectric layer is deposited over the first ferroelectric layer, and the second ferroelectric layer has a polycrystalline structure. The method further includes depositing a third ferroelectric layer over the second ferroelectric layer, with the third ferroelectric layer being amorphous, depositing a top electrode layer over the third ferroelectric layer, and patterning the top electrode layer, the third ferroelectric layer, the second ferroelectric layer, the first ferroelectric layer, and the bottom electrode layer to form a Ferroelectric Random Access Memory cell.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: May 30, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bi-Shen Lee, Yi Yang Wei, Hsing-Lien Lin, Hsun-Chung Kuang, Cheng-Yuan Tsai, Hai-Dang Trinh
  • Publication number: 20230100181
    Abstract: Various embodiments of the present disclosure are directed towards a memory device. The memory device has a first transistor having a first source/drain and a second source/drain, where the first source/drain and the second source/drain are disposed in a semiconductor substrate. A dielectric structure is disposed over the semiconductor substrate. A first memory cell is disposed in the dielectric structure and over the semiconductor substrate, where the first memory cell has a first electrode and a second electrode, where the first electrode of the first memory cell is electrically coupled to the first source/drain of the first transistor. A second memory cell is disposed in the dielectric structure and over the semiconductor substrate, where the second memory cell has a first electrode and a second electrode, where the first electrode of the second memory cell is electrically coupled to the second source/drain of the first transistor.
    Type: Application
    Filed: December 7, 2022
    Publication date: March 30, 2023
    Inventors: Fa-Shen Jiang, Hsia-Wei Chen, Hsun-Chung Kuang, Hai-Dang Trinh, Cheng-Yuan Tsai
  • Patent number: 11610927
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor. The image sensor includes and image sensor element disposed within a substrate. The substrate comprises a first material. The image sensor element includes an active layer comprising a second material different from the first material. A buffer layer is disposed between the active layer and the substrate. The buffer layer extends along outer sidewalls and a bottom surface of the active layer. A capping structure overlies the active layer. Outer sidewalls of the active layer are spaced laterally between outer sidewalls of the capping structure such that the capping structure continuously extends over outer edges of the active layer.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: March 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Kai Lan, Hai-Dang Trinh, Hsun-Chung Kuang
  • Publication number: 20230062897
    Abstract: A semiconductor device includes a diffusion barrier structure, a bottom electrode, a top electrode, a switching layer and a capping layer. The bottom electrode is over the diffusion barrier structure. The top electrode is over the bottom electrode. The switching layer is between the bottom electrode and the top electrode, and configured to store data. The capping layer is between the switching layer and the top electrode. The diffusion barrier structure includes a multiple-layer structure. A thermal conductivity of the diffusion barrier structure is greater than approximately 20 W/mK.
    Type: Application
    Filed: October 16, 2022
    Publication date: March 2, 2023
    Inventors: HAI-DANG TRINH, FA-SHEN JIANG, HSING-LIEN LIN, CHII-MING WU
  • Patent number: 11594678
    Abstract: Some embodiments relate to a memory device. The memory device includes a bottom electrode overlying a substrate. A data storage layer overlies the bottom electrode. A top electrode overlies the data storage layer. A conductive bridge is selectively formable within the data storage layer to couple the bottom electrode to the top electrode. A diffusion barrier layer is disposed between the data storage layer and the top electrode.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: February 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Albert Zhong, Cheng-Yuan Tsai, Hai-Dang Trinh, Shing-Chyang Pan
  • Patent number: 11545202
    Abstract: Various embodiments of the present disclosure are directed towards a memory device. The memory device has a first transistor having a first source/drain and a second source/drain, where the first source/drain and the second source/drain are disposed in a semiconductor substrate. A dielectric structure is disposed over the semiconductor substrate. A first memory cell is disposed in the dielectric structure and over the semiconductor substrate, where the first memory cell has a first electrode and a second electrode, where the first electrode of the first memory cell is electrically coupled to the first source/drain of the first transistor. A second memory cell is disposed in the dielectric structure and over the semiconductor substrate, where the second memory cell has a first electrode and a second electrode, where the first electrode of the second memory cell is electrically coupled to the second source/drain of the first transistor.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: January 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fa-Shen Jiang, Hsia-Wei Chen, Hsun-Chung Kuang, Hai-Dang Trinh, Cheng-Yuan Tsai
  • Publication number: 20220406916
    Abstract: Various embodiments of the present disclosure are directed towards a memory device including a first bottom electrode layer over a substrate. A ferroelectric switching layer is disposed over the first bottom electrode layer. A first top electrode layer is disposed over the ferroelectric switching layer. A second bottom electrode layer is disposed between the first bottom electrode layer and the ferroelectric switching layer. The second bottom electrode layer is less susceptible to oxidation than the first bottom electrode layer.
    Type: Application
    Filed: June 16, 2021
    Publication date: December 22, 2022
    Inventors: Yi Yang Wei, Bi-Shen Lee, Hsin-Yu Lai, Hai-Dang Trinh, Hsing-Lien Lin, Hsun-Chung Kuang
  • Patent number: 11532698
    Abstract: Various embodiments of the present disclosure are directed towards a metal-insulator-metal (MIM) capacitor including a diffusion barrier layer. A bottom electrode overlies a substrate. A capacitor dielectric layer overlies the bottom electrode. A top electrode overlies the capacitor dielectric layer. The top electrode includes a first top electrode layer, a second top electrode layer, and a diffusion barrier layer disposed between the first and second top electrode layers.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Hai-Dang Trinh, Fa-Shen Jiang
  • Patent number: 11532511
    Abstract: A method for forming a semiconductor structure includes following operations. A first substrate including a first side, a second side opposite to the first side, and a metallic pad disposed over the first side is received. A dielectric structure including a first trench directly above the metallic pad is formed. A second trench is formed in the dielectric structure and a portion of the first substrate. A sacrificial layer is formed to fill the first trench and the second trench. A third trench is formed directly above the metallic pad. A barrier ring and a bonding structure are formed in the third trench. A bonding layer is disposed to bond the first substrate to a second substrate. A portion of the second side of the first substrate is removed to expose the sacrificial layer. The sacrificial layer is removed by an etchant.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Gung-Pei Chang, Yao-Wen Chang, Hai-Dang Trinh
  • Patent number: 11527717
    Abstract: Various embodiments of the present disclosure are directed towards a memory cell including a co-doped data storage structure. A bottom electrode overlies a substrate and a top electrode overlies the bottom electrode. The data storage structure is disposed between the top and bottom electrodes. The data storage structure comprises a dielectric material doped with a first dopant and a second dopant.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: December 13, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Tzu-Chung Tsai, Fa-Shen Jiang, Bi-Shen Lee
  • Patent number: 11527713
    Abstract: The present disclosure, in some embodiments, relates to a memory device. The memory device includes a bottom electrode disposed over a lower interconnect within a lower inter-level dielectric (ILD) layer over a substrate. A data storage structure is over the bottom electrode. A first top electrode layer is disposed over the data storage structure, and a second top electrode layer is on the first top electrode layer. The second top electrode layer is less susceptible to oxidation than the first top electrode layer. A top electrode via is over and electrically coupled to the second top electrode layer.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: December 13, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bi-Shen Lee, Hai-Dang Trinh, Hsun-Chung Kuang, Tzu-Chung Tsai, Yao-Wen Chang
  • Publication number: 20220393101
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) chip comprising a memory cell with a sidewall spacer, and/or an etch stop layer, doped to reduce charge accumulation at an interface between the sidewall spacer and the etch stop layer. The memory cell comprises a bottom electrode, a data storage element overlying the bottom electrode, and a top electrode overlying the data storage element. The sidewall spacer overlies the bottom electrode on a common sidewall formed by the data storage element and the top electrode, and the etch stop layer lines the sidewall spacer. The sidewall spacer and the etch stop layer directly contact at the interface and form an electric dipole at the interface. The doping to reduce charge accumulation reduces an electric field produced by the electric dipole, thereby reducing the effect of the electric field on the memory cell.
    Type: Application
    Filed: July 29, 2021
    Publication date: December 8, 2022
    Inventors: Bi-Shen Lee, Hai-Dang Trinh, Hsun-Chung Kuang, Cheng-Yuan Tsai
  • Publication number: 20220392906
    Abstract: A method includes forming a bottom electrode layer, and depositing a first ferroelectric layer over the bottom electrode layer. The first ferroelectric layer is amorphous. A second ferroelectric layer is deposited over the first ferroelectric layer, and the second ferroelectric layer has a polycrystalline structure. The method further includes depositing a third ferroelectric layer over the second ferroelectric layer, with the third ferroelectric layer being amorphous, depositing a top electrode layer over the third ferroelectric layer, and patterning the top electrode layer, the third ferroelectric layer, the second ferroelectric layer, the first ferroelectric layer, and the bottom electrode layer to form a Ferroelectric Random Access Memory cell.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 8, 2022
    Inventors: Bi-Shen Lee, Yi Yang Wei, Hsing-Lien Lin, Hsun-Chung Kuang, Cheng-Yuan Tsai, Hai-Dang Trinh
  • Publication number: 20220367806
    Abstract: A semiconductor device includes a bottom electrode, a top electrode over the bottom electrode, a switching layer between the bottom electrode and the top electrode, wherein the switching layer is configured to store data, a capping layer in contact with the switching layer, wherein the capping layer is configured to extract active metal ions from the switching layer, an ion reservoir region formed in the capping layer, a diffusion barrier layer between the bottom electrode and the switching layer, wherein the diffusion barrier layer includes palladium (Pd), cobalt (Co), or a combination thereof and is configured to obstruct diffusion of the active metal ions between the switching layer and the bottom electrode, and the diffusion layer has a concaved top surface, and a passivation layer covering a portion of the top electrode, and wherein the passivation layer directly contacts a top surface of the switching layer.
    Type: Application
    Filed: June 14, 2022
    Publication date: November 17, 2022
    Inventors: HAI-DANG TRINH, HSING-LIEN LIN, FA-SHEN JIANG
  • Publication number: 20220367810
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming a memory device. The method includes forming a bottom electrode over a substrate. A data storage structure is formed on the bottom electrode. The data storage structure comprises a first atomic percentage of a first dopant and a second atomic percentage of a second dopant. The first atomic percentage is different from the second atomic percentage. A top electrode is formed on the data storage structure.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 17, 2022
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Tzu-Chung Tsai, Fa-Shen Jiang, Bi-Shen Lee
  • Publication number: 20220367607
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip. The method includes forming a bottom electrode over a substrate. A dielectric layer is formed on the bottom electrode. A first top electrode layer is deposited on the dielectric layer by a first deposition process. A diffusion barrier layer is deposited on the first top electrode layer by a second deposition process different from the first deposition process. A second top electrode layer is deposited on the diffusion barrier layer by a third deposition. The third deposition process is the same as the first deposition process.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 17, 2022
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Hai-Dang Trinh, Fa-Shen Jiang