Patents by Inventor Han Wui Then

Han Wui Then has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230197732
    Abstract: In one embodiment, an integrated circuit includes a silicon substrate, a gallium nitride (GaN) layer above the silicon substrate, a bonding layer above the GaN layer, and a silicon layer above the bonding layer. Further, the integrated circuit includes a first transistor on the GaN layer and a second transistor on the silicon layer.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Marko Radosavljevic, Han Wui Then, Sansaptak Dasgupta, Paul Fischer, Kimin Jun, Brennen K. Mueller
  • Patent number: 11670709
    Abstract: Disclosed herein are IC structures, packages, and device assemblies with III-N transistors that include additional materials, referred to herein as “stressor materials,” which may be selectively provided over portions of polarization materials to locally increase or decrease the strain in the polarization material. Providing a compressive stressor material may decrease the tensile stress imposed by the polarization material on the underlying portion of the III-N semiconductor material, thereby decreasing the two-dimensional electron gas (2DEG) and increasing a threshold voltage of a transistor. On the other hand, providing a tensile stressor material may increase the tensile stress imposed by the polarization material, thereby increasing the 2DEG and decreasing the threshold voltage. Providing suitable stressor materials enables easier and more accurate control of threshold voltage compared to only relying on polarization material recess.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: June 6, 2023
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Marko Radosavljevic, Han Wui Then, Nidhi Nidhi, Rahul Ramaswamy, Paul B. Fischer, Walid M. Hafez, Johann Christian Rode
  • Patent number: 11670686
    Abstract: A method for forming III-N structures of desired nanoscale dimensions is disclosed. The method is based on, first, providing a material to serve as a shell inside which a cavity can be formed, followed by using epitaxial growth to fill the cavity with III-N semiconductor(s). Filling a cavity of specified shape and dimensions with a III-N semiconductor results in formation of a III-N structure which has shape and dimensions defined by those of the cavity in the shell, advantageously enabling formation of III-N structures on a nanometer scale without having to rely on etching of III-N materials. Ensuring that at least a part of the III-N material in the cavity is formed by lateral epitaxial overgrowth allows obtaining high quality III-N semiconductor in that part without having to grow a thick layer. Disclosed III-N nanostructures can serve as foundation for fabricating III-N device components, e.g. III-N transistors, having non-planar architecture.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: June 6, 2023
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Sansaptak Dasgupta, Han Wui Then
  • Patent number: 11670637
    Abstract: An integrated circuit die has a layer of first semiconductor material comprising a Group III element and nitrogen and having a first bandgap. A first transistor structure on a first region of the die has: a quantum well (QW) structure that includes at least a portion of the first semiconductor material and a second semiconductor material having a second bandgap smaller than the first bandgap, a first source and a first drain in contact with the QW structure, and a gate structure in contact with the QW structure between the first source and the first drain. A second transistor structure on a second region of the die has a second source and a second drain in contact with a semiconductor body, and a second gate structure in contact with the semiconductor body between the second source and the second drain. The semiconductor body comprises a Group III element and nitrogen.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: June 6, 2023
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Sansaptak Dasgupta, Han Wui Then, Paul B. Fischer, Walid M. Hafez
  • Patent number: 11671075
    Abstract: Techniques are disclosed for forming high frequency film bulk acoustic resonator (FBAR) devices having multiple resonator thicknesses on a common substrate. A piezoelectric stack is formed in an STI trench and overgrown onto the STI material. In some cases, the piezoelectric stack can include epitaxially grown AlN. In some cases, the piezoelectric stack can include single crystal (epitaxial) AlN in combination with polycrystalline (e.g., sputtered) AlN. The piezoelectric stack thus forms a central portion having a first resonator thickness and end wings extending from the central portion having a different resonator thickness. Each wing may also have different thicknesses. Thus, multiple resonator thicknesses can be achieved on a common substrate, and hence, multiple resonant frequencies on that same substrate. The end wings can have metal electrodes formed thereon, and the central portion can have a plurality of IDT electrodes patterned thereon.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: June 6, 2023
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Bruce A. Block, Paul B. Fischer, Han Wui Then, Marko Radosavljevic
  • Patent number: 11664417
    Abstract: Integrated circuits with III-N metal-insulator-semiconductor field effect transistor (MISFET) structures that employ one or more gate dielectric materials that differ across the MISFETs. Gate dielectric materials may be selected to modulate dielectric breakdown strength and/or threshold voltage between transistors. Threshold voltage may be modulated between two MISFET structures that may be substantially the same but for the gate dielectric. Control of the gate dielectric material may render some MISFETs to be operable in depletion mode while other MISFETs are operable in enhancement mode. Gate dielectric materials may be varied by incorporating multiple dielectric materials in some MISFETs of an IC while other MISFETs of the IC may include only a single dielectric material. Combinations of gate dielectric material layers may be selected to provide a menu of low voltage, high voltage, enhancement and depletion mode MISFETs within an IC.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: May 30, 2023
    Assignee: Intel Corporation
    Inventors: Walid Hafez, Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Paul Fischer
  • Patent number: 11658217
    Abstract: Disclosed herein are IC structures, packages, and devices assemblies that use ions or fixed charge to create field plate structures which are embedded in a dielectric material between gate and drain electrodes of a transistor. Ion- or fixed charge-based field plate structures may provide viable approaches to changing the distribution of electric field at a transistor drain to increase the breakdown voltage of a transistor without incurring the large parasitic capacitances associated with the use of metal field plates. In one aspect, an IC structure includes a transistor, a dielectric material between gate and drain electrodes of the transistor, and an ion- or fixed charge-based region within the dielectric material, between the gate and the drain electrodes. Such an ion- or fixed charge-based region realizes an ion- or fixed charge-based field plate structure. Optionally, the IC structure may include multiple ion- or fixed charge-based field plate structures.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: May 23, 2023
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Marko Radosavljevic, Glenn A. Glass, Sansaptak Dasgupta, Nidhi Nidhi, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Johann Christian Rode
  • Patent number: 11652143
    Abstract: Disclosed herein are IC structures, packages, and devices that include thin-film transistors (TFTs) integrated on the same substrate/die/chip as III-N devices, e.g., III-N transistors. In various aspects, TFTs integrated with III-N transistors have a channel and source/drain materials that include one or more of a crystalline material, a polycrystalline semiconductor material, or a laminate of crystalline and polycrystalline materials. In various aspects, TFTs integrated with III-N transistors are engineered to include one or more of 1) graded dopant concentrations in their source/drain regions, 2) graded dopant concentrations in their channel regions, and 3) thicker and/or composite gate dielectrics in their gate stacks.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: May 16, 2023
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Nidhi Nidhi, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Samuel Jack Beach, Xiaojun Weng, Johann Christian Rode, Marko Radosavljevic, Sansaptak Dasgupta
  • Patent number: 11626513
    Abstract: Embodiments include a transistor and methods of forming a transistor. In an embodiment, the transistor comprises a semiconductor channel, a source electrode on a first side of the semiconductor channel, a drain electrode on a second side of the semiconductor channel, a polarization layer over the semiconductor channel, an insulator stack over the polarization layer, and a gate electrode over the semiconductor channel. In an embodiment, the gate electrode comprises a main body that passes through the insulator stack and the polarization layer, and a first field plate extending out laterally from the main body.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: April 11, 2023
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Nidhi Nidhi, Walid M. Hafez, Johann C. Rode, Paul Fischer, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Heli Chetanbhai Vora
  • Publication number: 20230108072
    Abstract: In one embodiment, an apparatus includes a source region, a drain region, a channel between the source and drain regions, and a polarization layer on the channel. The channel includes gallium and nitrogen, and the polarization layer includes a group III-nitride (III-N) material. The apparatus further includes a gate structure having a first region and a second region. The first region extends into the polarization layer and includes a metal. The second region is coupled to the first region and includes a polycrystalline semiconductor material.
    Type: Application
    Filed: September 22, 2021
    Publication date: April 6, 2023
    Applicant: Intel Corporation
    Inventors: Han Wui Then, Paul Fischer, Marko Radosavljevic
  • Publication number: 20230097805
    Abstract: Embodiments disclosed herein include transistor devices and methods of forming such devices. In an embodiment, a transistor device comprises a channel, where the channel comprises a first semiconductor material. In an embodiment, a source contact is at a first end of the channel, and a drain contact at a second end of the channel. In an embodiment, a gate electrode is between the source contact and the drain contact, and a field plate extends from the gate electrode towards the drain contact.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Samuel James BADER, Han Wui THEN
  • Publication number: 20230102318
    Abstract: In one embodiment, an integrated circuit die includes a substrate, a base structure, and a plurality of semiconductor structures. The substrate includes silicon. The base structure is above the substrate and includes one or more group III-nitride (III-N) materials. The semiconductor structures are in a two-dimensional (2D) layout on the base structure and include a plurality of metal contacts, at least some of which have different shapes and comprise different metals.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Rahul Ramaswamy, Walid M. Hafez, Marko Radosavljevic, Han Wui Then, Sansaptak Dasgupta
  • Patent number: 11616488
    Abstract: An integrated circuit film bulk acoustic resonator (FBAR) device having multiple resonator thicknesses is formed on a common substrate in a stacked configuration. In an embodiment, a seed layer is deposited on a substrate, and one or more multi-layer stacks are deposited on the seed layer, each multi-layer stack having a first metal layer deposited on a first sacrificial layer, and a second metal layer deposited on a second sacrificial layer. The second sacrificial layer can be removed and the resulting space is filled in with a piezoelectric material, and the first sacrificial layer can be removed to release the piezoelectric material from the substrate and suspend the piezoelectric material above the substrate. More than one multi-layer stack can be added, each having a unique resonant frequency. Thus, multiple resonator thicknesses can be achieved on a common substrate, and hence, multiple resonant frequencies on that same substrate.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: March 28, 2023
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Paul B. Fischer, Han Wui Then, Marko Radosavljevic
  • Publication number: 20230090106
    Abstract: Gallium nitride (GaN) layer transfer for integrated circuit technology is described. In an example, an integrated circuit structure includes a substrate including silicon. A first layer including gallium and nitrogen is over a first region of the substrate, the first layer having a gallium-polar orientation with a top crystal plane consisting of a gallium face. A second layer including gallium and nitrogen is over a second region of the substrate, the second layer having a nitrogen-polar orientation with a top crystal plane consisting of a nitrogen face.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 23, 2023
    Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Sansaptak DASGUPTA, Paul B. FISCHER, Walid M. HAFEZ, Nicole K. THOMAS, Nityan NAIR, Pratik KOIRALA, Paul NORDEEN, Tushar TALUKDAR, Thomas HOFF, Thoe MICHAELOS
  • Patent number: 11610971
    Abstract: An integrated circuit structure comprises a base layer that includes a channel region, wherein the base layer and the channel region include group III-V semiconductor material. A polarization layer stack is over the base layer, wherein the polarization layer stack comprises a buffer stack, an interlayer over the buffer stack, a polarization layer over the interlayer. A cap layer stack is over the polarization layer to reduce transistor access resistance.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: March 21, 2023
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Marko Radosavljevic, Han Wui Then, Nidhi Nidhi, Rahul Ramaswamy, Johann Rode, Paul Fischer, Walid Hafez
  • Patent number: 11610887
    Abstract: Disclosed herein are IC structures, packages, and devices that include thin-film transistors (TFTs) integrated on the same substrate/die/chip as III-N transistors. An example IC structure includes an III-N semiconductor material provided over a support structure, a III-N transistor provided over a first portion of the III-N material, and a TFT provided over a second portion of the III-N material. Because the III-N transistor and the TFT are both provided over a single support structure, they may be referred to as “integrated” transistors. Because the III-N transistor and the TFT are provided over different portions of the III-N semiconductor material, and, therefore, over different portion of the support structure, their integration may be referred to as “side-by-side” integration. Integrating TFTs with III-N transistors may reduce costs and improve performance, e.g., by reducing losses incurred when power is routed off chip in a multi-chip package.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: March 21, 2023
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer, Walid M. Hafez
  • Publication number: 20230081460
    Abstract: Gallium nitride (GaN) integrated circuit technology with optical communication is described. In an example, an integrated circuit structure includes a layer or substrate having a first region and a second region, the layer or substrate including gallium and nitrogen. A GaN-based device is in or on the first region of the layer or substrate. A CMOS-based device is over the second region of the layer or substrate. An interconnect structure is over the GaN-based device and over the CMOS-based device, the interconnect structure including conductive interconnects and vias in a dielectric layer. A photonics waveguide is over the interconnect structure, the photonics waveguide including silicon, and the photonics waveguide bonded to the dielectric layer of the interconnect structure.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 16, 2023
    Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Nicole K. THOMAS, Pratik KOIRALA, Nityan NAIR, Paul B. FISCHER
  • Publication number: 20230073026
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic assembly may include a first die, having a first surface and an opposing second surface, in a first layer, and including a first metallization stack at the first surface; a device layer on the first metallization stack; a second metallization stack on the device layer; and an interconnect on the first surface of the die electrically coupled to the first metallization stack; a conductive pillar in the first layer; and a second die, having a first surface and an opposing second surface, in a second layer on the first layer, wherein the first surface of the second die is coupled to the conductive pillar and to the second surface of the first die by a hybrid bonding region.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 9, 2023
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Kimin Jun, Shawna M. Liff, Johanna M. Swan, Han Wui Then
  • Publication number: 20230068318
    Abstract: Disclosed herein are IC devices, packages, and device assemblies that include III-N diodes with n-doped wells and capping layers. An example IC device includes a support structure and a III-N layer, provided over a portion of the support structure, the III-N layer including an n-doped well of a III-N semiconductor material having n-type dopants with a dopant concentration of at least 5×1017 dopants per cubic centimeter. The IC device further includes a first and a second electrodes and at least one capping layer. The first electrode interfaces a first portion of the n-doped well. The capping layer interfaces a second portion of the n-doped well and includes a semiconductor material with a dopant concentration below 1017 dopants per cubic centimeter. The second electrode is provided so that the capping layer is between the second portion of the n-doped well and the second electrode.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Applicant: Intel Corporation
    Inventors: Richard Geiger, Georgios Panagopoulos, Luis Felipe Giles, Peter Baumgartner, Harald Gossner, Sansaptak Dasgupta, Marko Radosavljevic, Han Wui Then
  • Publication number: 20230066336
    Abstract: Gallium nitride (GaN) epitaxy on patterned substrates for integrated circuit technology is described. In an example, an integrated circuit structure includes a material layer including gallium and nitrogen, the material layer having a first side and a second side opposite the first side. A plurality of fins is on the first side of the material layer, the plurality of fins including silicon. A device layer is on the second side of the material layer, the device layer including one or more GaN-based devices.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Inventors: Pratik KOIRALA, Paul NORDEEN, Tushar TALUKDAR, Kimin JUN, Thomas HOFF, Han Wui THEN, Nicole K. THOMAS, Marko RADOSAVLJEVIC, Paul B. FISCHER