Patents by Inventor Hang Yu

Hang Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10950430
    Abstract: Embodiments of the present disclosure relate to methods for in-situ deposition and treatment of a thin film for improved step coverage. In one embodiment, the method for processing a substrate is provided. The method includes forming a dielectric layer on patterned features of the substrate by exposing the substrate to a gas mixture of a first precursor and a second precursor simultaneously with plasma present in a process chamber, wherein the plasma is formed by a first pulsed RF power, exposing the dielectric layer to a first plasma treatment using a gas mixture of nitrogen and helium in the process chamber, and performing a plasma etch process by exposing the dielectric layer to a plasma formed from a gas mixture of a fluorine-containing precursor and a carrier gas, wherein the plasma is formed in the process chamber by a second pulsed RF power.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: March 16, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Vinayak Veer Vats, Hang Yu, Deenesh Padhi, Changling Li, Gregory M. Amico, Sanjay G. Kamath
  • Patent number: 10921376
    Abstract: A sensor apparatus (10) for monitoring at least one battery cell (20) of a battery system (100), having a sensor element (11) for detecting at least one state variable of the battery cell (20), at least one electrically and/or thermally conductive connecting element (12) connected to the sensor element (11) so that the sensor element can be connected to the battery cell (20) and to an electronic unit (30) of the battery system (100), wherein the connecting element (12) is formed as a flexible printed circuit board (12).
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: February 16, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Christian Schmid-Schoenbein, David Rychtarik, Hang Yu, Walter Jasch
  • Publication number: 20210040607
    Abstract: Exemplary methods of forming semiconductor structures may include forming a silicon oxide layer from a silicon-containing precursor and an oxygen-containing precursor. The methods may include forming a silicon nitride layer from a silicon-containing precursor, a nitrogen-containing precursor, and an oxygen-containing precursor. The silicon nitride layer may be characterized by an oxygen concentration greater than or about 5 at. %. The methods may also include repeating the forming a silicon oxide layer and the forming a silicon nitride layer to produce a stack of alternating layers of silicon oxide and silicon nitride.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 11, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Xinhai Han, Hang Yu, Kesong Hu, Kristopher Enslow, Masaki Ogata, Wenjiao Wang, Chuan Ying Wang, Chuanxi Yang, Joshua Maher, Phaik Lynn Leong, Qi En Teong, Alok Jain, Nagarajan Rajagopalan, Deenesh Padhi
  • Publication number: 20200363388
    Abstract: The invention provides a method for establishing a separable regeneration system for verifying regeneration effect between two antioxidants, which belongs to the field of regeneration effect of antioxidants. According to different solubilities of two antioxidants, lipid-soluble antioxidant is first combined into PE film, and water-soluble antioxidant is dissolved into deionized water and a separable regeneration system where antioxidants can contact with other but not dissolve in each other is formed. This method compares the differences of change of antioxidant capacity in aqueous phase with and without lipid-soluble antioxidant so that to judge whether the added lipid-soluble antioxidant has regeneration effect on aqueous-soluble antioxidant. The present invention effectively verifies the regeneration effect between different antioxidants, and has advantages of simple operation, less interference factors, intuitive and high efficiency.
    Type: Application
    Filed: July 2, 2019
    Publication date: November 19, 2020
    Inventors: Hang YU, Yaxin HE, Yunfei XIE, Yahui GUO, Yuliang CHENG, Weirong YAO
  • Publication number: 20200348231
    Abstract: The present invention discloses a molecularly imprinted fluorescence sensor based on carbon dots for detecting chloramphenicol (CAP) and its preparation method and its application. This invention uses carbon dots (CD) as fluorescence carrier and molecularly imprinted membrane (MIP) as enrichment container to synthesize fluorescent molecularly imprinted material with core-shell structure so that to achieve a rapid and specific detection of CAP. The reverse micro-emulsion method was used, firstly a reverse microemulsion system was established, CAP was used as a template molecule in the water phase, and a molecularly imprinted membrane was synthesized on the surface by using CD as a carrier. The prepared material is nano-sized microspheres with excellent water-dispersibility and stability. It has good sensitivity to the target substance CAP, rapid detection speed, strong specific selectivity, strong chemical stability and low cost, and has good application prospects in the detection of CAP.
    Type: Application
    Filed: July 2, 2019
    Publication date: November 5, 2020
    Inventors: Hang YU, Shishi CHEN, Yunfei XIE, Yahui GUO, Yuliang CHENG, Weirong YAO
  • Publication number: 20200329020
    Abstract: A method for dynamic encryption and signing includes: obtaining, by a terminal during session connection, a predetermined first key index and a randomly-generated first signature index; signing session request data with a first signature corresponding to the first signature index; encrypting the session request data with a first key corresponding to the first key index; sending the encrypted session request data and the first signature index to the server; and receiving, from the server, session response data signed with a second signature corresponding to a second signature index and encrypted with a second key corresponding to a second key index, after decryption and signature verification by the server over the session request data succeed. The second signature index and the second key index are randomly selected by the server and saved in a login session object accessible by both the server and the terminal.
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Inventors: Yixin GUO, Hang YU, Chun WANG, Xianhua DU
  • Publication number: 20200305705
    Abstract: A method for processing pupil tracking images, comprising the steps of: 1) acquiring eye images multiple times; 2) processing each acquired eye image, and determining whether a pupil can be positioned in the acquired image; and 3) determining that pupil tracking is completed when the pupil can be positioned in consecutive n pieces of eye images. Image processing efficiency is improved by searching a potential bright spot area and carrying out Blob analysis smearing images caused by pupil movement can be eliminated, the pupil edge is accurately positioned by adopting a line drawing method in collaboration with a support vector machine when determining the pupil edge, and finally a weighted least square method is adopted to fit a circle/ellipse (pupil). Therefore, real-time tracking and analysis of the pupil under a complex background are realized, and reliable data are provided for subsequent steps to obtain the refractive parameters of the eye.
    Type: Application
    Filed: December 13, 2018
    Publication date: October 1, 2020
    Inventors: Jinhai HUANG, Hang YU, Meixiao SHEN, Hao CHEN
  • Patent number: 10742620
    Abstract: A method for dynamic encryption and signing, a terminal and a server are provided. The method includes that: at least one key and at least one signature are generated through native data; a first predetermined key index and a first random signature index are selected during session connection; a first key and a first signature are located from the at least one key and the at least one signature according to the first key index and the first signature index; session request data is signed with the first signature, and the session request data is encrypted with the first key and sent to a server; and session response data signed with a second random signature and encrypted with a second random key is received from the server after decryption and signature verification by the server over the session request data succeed.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: August 11, 2020
    Assignee: TENCENT TECHNOLOGY (SHENZHEN) COMPANY LIMITED
    Inventors: Yixin Guo, Hang Yu, Chun Wang, Xianhua Du
  • Publication number: 20200225457
    Abstract: An embodiment in accordance with the present invention provides a miniature microscope capable of performing in vivo, real-time imaging of multiple organ sites in awake and behaving animals (e.g. rodents). A microscope according to the p resent invention includes multiple optical contrast mechanisms (i.e. contrast arising from neural, hemodynamic and other physiological components). Exemplary contrast mechanisms include, but are not limited to fluorescence, hemoglobin level, deoxyhemoglobin level, and blood flow. The microscope is fully adaptable to in vitro and ex vivo imaging, can be customized to concurrently image at variable magnifications, conduct optogenetic/electrical/chemical stimulations, drug delivery, micro-dialysis, accompanied by electrical signal recording, wireless image transmission and charging.
    Type: Application
    Filed: July 6, 2018
    Publication date: July 16, 2020
    Inventors: Arvind PATHAK, Nitish THAKOR, Janaka SENARATHNA, Hang YU
  • Publication number: 20200211834
    Abstract: Methods for forming the silicon boron nitride layer are provided. The method includes positioning a substrate on a pedestal in a process region within a process chamber, heating a pedestal retaining the substrate, and introducing a first flow of a first process gas and a second flow of a second process gas to the process region. The first flow of the first process gas contains silane, ammonia, helium, nitrogen, argon, and hydrogen. The second flow of the second process gas contains diborane and hydrogen. The method also includes forming a plasma concurrently with the first flow of the first process gas and the second flow of the second process gas to the process region and exposing the substrate to the first process gas, the second process gas, and the plasma to deposit the silicon boron nitride layer on the substrate.
    Type: Application
    Filed: December 23, 2019
    Publication date: July 2, 2020
    Inventors: Chuanxi YANG, Hang YU, Sanjay KAMATH, Deenesh PADHI, Honggun KIM, Euhngi LEE, Zubin HUANG, Diwakar N. KEDLAYA, Rui CHENG, Karthik JANAKIRAMAN
  • Patent number: 10696599
    Abstract: There is provided a shape memory ceramic structure including an aggregate population of crystalline particles. Each crystalline particle in the population, of crystalline particles comprises a shape memory ceramic particle material. Each crystalline particle in the population of crystalline particles has a crystalline particle extent that is between about 0.5 microns and about fifty microns. At least a portion of the population of crystalline particles has a crystalline structure that is either oligocrystalline or monocrystalline.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: June 30, 2020
    Assignees: Massachusetts Institute of Technology, Nanyang Technological University
    Inventors: Zehui Du, Hang Yu, Christopher A. Schuh, Chee Lip Gan
  • Publication number: 20200202044
    Abstract: A process development visualization tool generates a first visualization of a parameter associated with a manufacturing process, and provides a GUI control element associated with a process variable of the manufacturing process, wherein the GUI control element has a first setting associated with a first value for the process variable. The process development tool receives a user input to adjust the GUI control element from the first setting to a second setting, determines a second value for the process variable based on the second setting, and determines a second set of values for the parameter that are associated with the second value for the process variable. The process development tool then generates a second visualization of the parameter, wherein the second visualization represents the second set of values for the parameter that are associated with the second value for the process variable.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 25, 2020
    Inventors: Vinayak Veer Vats, Sidharth Bhatia, Garrett Ho-Yee Sin, Pramod Nambiar, Hang Yu, Sanjay Kamath, Deenesh Padhi, Heng-Cheng Pai
  • Publication number: 20200190664
    Abstract: Methods for depositing hardmask materials and films, and more specifically, for depositing phosphorus-doped, silicon nitride films are provided. A method of depositing a material on a substrate in a processing chamber includes exposing a substrate to a deposition gas in the presence of RF power to deposit a phosphorus-doped, silicon nitride film on the substrate during a plasma-enhanced chemical vapor deposition (PE-CVD) process. The deposition gas contains one or more silicon precursors, one or more nitrogen precursors, one or more phosphorus precursors, and one or more carrier gases. The phosphorus-doped, silicon nitride film has a phosphorus concentration in a range from about 0.1 atomic percent (at %) to about 10 at %.
    Type: Application
    Filed: October 14, 2019
    Publication date: June 18, 2020
    Inventors: Kesong HU, Rana HOWLADER, Michael Wenyoung TSIANG, Xinhai HAN, Hang YU, Deenesh PADHI
  • Publication number: 20200176241
    Abstract: Embodiments disclosed herein include methods of forming high quality silicon nitride films. In an embodiment, a method of depositing a film on a substrate may comprise forming a silicon nitride film over a surface of the substrate in a first processing volume with a deposition process, and treating the silicon nitride film in a second processing volume, wherein treating the silicon nitride film comprises exposing the film to a plasma induced by a modular high-frequency plasma source. In an embodiment, a sheath potential of the plasma is less than 100 V, and a power density of the high-frequency plasma source is approximately 5 W/cm2 or greater, approximately 10 W/cm2 or greater, or approximately 20 W/cm2 or greater.
    Type: Application
    Filed: November 6, 2019
    Publication date: June 4, 2020
    Inventors: Vinayak Veer Vats, Hang Yu, Philip Allan Kraus, Sanjay G. Kamath, William John Durand, Lakmal Charidu Kalutarage, Abhijit B. Mallick, Changling Li, Deenesh Padhi, Mark Joseph Saly, Thai Cheng Chua, Mihaela A. Balseanu
  • Publication number: 20200100669
    Abstract: The invention provides a calibration method and a calibration device of a system for measuring corneal parameters, and particularly the invention provides a system calibration method and device for geometric distortion, caused by camera shooting angle when measuring cornea-related parameters, of a digital slit lamp and a system of similar principles based on machine vision.
    Type: Application
    Filed: January 25, 2019
    Publication date: April 2, 2020
    Inventors: Hao CHEN, Jinhai HUANG, Hang YU
  • Publication number: 20200077972
    Abstract: A method of detecting flow instability includes insonating an area of interest with ultrasound wave pulses, acquiring radio frequency (RF) data from echo pulses of the ultrasound wave pulses, processing the RF data, and deriving a Doppler band-width from the processed RF data by AR modeling. Also described herein is a device for detecting flow instability. The device includes an emitter configured to insonate ultrasound wave pulses on an area of interest, a receiver configured to acquiring radio frequency (RF) data from echo pulses of the ultrasound wave pulses, and a processor configured to process the RF data, and derive a Doppler band-width from the processed RF data by AR modeling.
    Type: Application
    Filed: September 6, 2019
    Publication date: March 12, 2020
    Inventors: Yat Shun YIU, Adrian Jian Yuan CHEE, Alfred Cheuk Hang YU, Guo TANG, Wenbo LUO
  • Patent number: 10554368
    Abstract: The disclosed subject matter includes techniques for wireless communication. In one example, a system includes a processor and a computer-readable memory storage device for storing executable instructions that can be executed by the processor to cause the processor to send a data frame to a client device. The processor can also receive a data-acknowledgment frame from the client device in response to the data frame within a predetermined time after sending the data frame. The processor can also aggregate a response data-acknowledgment frame in response to receiving the data-acknowledgment frame with at least one data frame to form an aggregated frame. The processor can also further send the aggregated frame to the client device and the at least one other client device within the predetermined time after receiving the data-acknowledgement frame.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: February 4, 2020
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Ranveer Chandra, David W. Russo, Hang Yu
  • Publication number: 20200029357
    Abstract: Disclosed embodiments include methods for control channel design in many-antenna multi-user (MU) multiple-input multiple-output (MIMO) wireless systems. A beacon comprising an identifier of a many-antenna base station is encoded into a base sequence. A plurality of synchronization sequences is generated based on the encoded base sequence and a set of orthogonal beam sequences. The many-antenna base-station transmits, using a plurality of antennas, the plurality of synchronization sequences in a plurality of beam directions associated with the set of orthogonal beam sequences for synchronization and associated with users without knowledge of channel state information (CSI).
    Type: Application
    Filed: September 16, 2019
    Publication date: January 23, 2020
    Inventors: Clayton W. Shepard, Lin Zhong, Abeer Javed, Hang Yu
  • Patent number: 10515796
    Abstract: Embodiments described herein relate to methods of forming silicon nitride films. In one embodiment, a first process gas set including a silicon-containing gas and a first nitrogen-containing gas is flowed into the process chamber. An initiation layer is deposited by applying a first radio frequency power to the first process gas set at a first frequency and a first power level. The first flow of the first nitrogen-containing gas of the first process gas set is discontinued and a second process gas set including the silicon-containing gas, a second nitrogen-containing gas, and a hydrogen-containing gas is flowed into the process chamber. A bulk silicon nitride layer is deposited on the initiation layer by applying a second RF power to the second process gas set at a second frequency higher than the first frequency and a second power level higher than the first power level.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: December 24, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael Wenyoung Tsiang, Hang Yu, Deenesh Padhi, Tza-Jing Gung
  • Publication number: 20190385844
    Abstract: Embodiments of the present disclosure relate to methods for in-situ deposition and treatment of a thin film for improved step coverage. In one embodiment, the method for processing a substrate is provided. The method includes forming a dielectric layer on patterned features of the substrate by exposing the substrate to a gas mixture of a first precursor and a second precursor simultaneously with plasma present in a process chamber, wherein the plasma is formed by a first pulsed RF power, exposing the dielectric layer to a first plasma treatment using a gas mixture of nitrogen and helium in the process chamber, and performing a plasma etch process by exposing the dielectric layer to a plasma formed from a gas mixture of a fluorine-containing precursor and a carrier gas, wherein the plasma is formed in the process chamber by a second pulsed RF power.
    Type: Application
    Filed: June 18, 2019
    Publication date: December 19, 2019
    Inventors: Vinayak Veer VATS, Hang YU, Deenesh PADHI, Changling LI, Gregory M. AMICO, Sanjay G. KAMATH