Patents by Inventor Hans-Joachim Schulze

Hans-Joachim Schulze has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190157438
    Abstract: Some embodiments relate to a semiconductor device that includes a body region of a field effect transistor structure formed in a semiconductor substrate between a drift region of the field effect transistor structure and a source region of the field effect transistor structure. The semiconductor substrate includes chalcogen atoms at an atom concentration of less than 1×1013 cm?3 at a p-n junction between the body region and the drift region, and at least part of the source region includes chalcogen atoms at an atom concentration of greater than 1×1014 cm?3. Additional semiconductor device embodiments and corresponding methods of manufacture are described.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Inventors: Hans-Joachim Schulze, Philip Christoph Brandt, Andre Rainer Stegner
  • Publication number: 20190157435
    Abstract: A method of manufacturing a semiconductor device includes forming a profile of net doping in a drift zone of a semiconductor body by multiple irradiations with protons and generating hydrogen-related donors by annealing the semiconductor body. At least 50% of a vertical extension of the drift zone between first and second sides of the semiconductor body is undulated and includes multiple doping peak values between 1×1013 cm?3 and 5×1014 cm?3.
    Type: Application
    Filed: January 25, 2019
    Publication date: May 23, 2019
    Inventors: Elmar Falck, Andreas Haertl, Manfred Pfaffenlehner, Francisco Javier Santos Rodriguez, Daniel Schloegl, Hans-Joachim Schulze, Andre Stegner, Johannes Georg Laven
  • Publication number: 20190157401
    Abstract: A method of manufacturing a power semiconductor device includes: creating a doped contact region on top of a surface of a carrier; creating, on top of the contact region, a doped transition region having a maximum dopant concentration of at least 0.5*1015 cm?3 for at least 70% of a total extension of the doped transition region in an extension direction and a maximal dopant concentration gradient of at most 3*1022 cm?4, wherein a lower subregion of the doped transition region is in contact with the contact region and has a maximum dopant concentration at least 100 times higher than a maximum dopant concentration of an upper subregion of the doped transition region; and creating a doped drift region on top of the upper subregion of the doped transition region, the doped drift region having a lower dopant concentration than the upper subregion of the doped transition region.
    Type: Application
    Filed: December 28, 2018
    Publication date: May 23, 2019
    Inventors: Matthias Kuenle, Daniel Schloegl, Hans-Joachim Schulze, Christoph Weiss
  • Publication number: 20190148217
    Abstract: An embodiment of a method for manufacturing a semiconductor device includes: providing a monocrystalline semiconductor substrate having a first side; forming a plurality of recess structures in the semiconductor substrate at the first side; filling the recess structures with a dielectric material to form dielectric islands in the recess structures; forming a semiconductor layer on the first side of the semiconductor substrate to cover the dielectric islands; and subjecting the semiconductor layer to heat treatment and recrystallizing the semiconductor layer to form a recrystallized semiconductor layer, so that a crystal structure of the recrystallized semiconductor layer adapts to a crystal structure of the semiconductor substrate, and so that the semiconductor substrate and the semiconductor layer together form a compound wafer with the dielectric islands at least partially buried in the semiconductor material of the compound wafer.
    Type: Application
    Filed: November 15, 2018
    Publication date: May 16, 2019
    Inventors: Andreas Moser, Matteo Dainese, Matthias Kuenle, Hans-Joachim Schulze
  • Patent number: 10273597
    Abstract: In accordance with a method of manufacturing CZ silicon wafers, a parameter of at least two of the CZ silicon wafers is measured. A group of the CZ silicon wafers falling within a tolerance of a target specification is determined. The group of the CZ silicon wafers is divided into sub-groups taking into account the measured parameter. An average value of the parameter of the CZ silicon wafers of each sub-group differs among the sub-groups, and a tolerance of the parameter of the CZ silicon wafers of each sub-group is smaller than a tolerance of the parameter of the target specification. A labeling configured to distinguish between the CZ silicon wafers of different sub-groups is prepared. The CZ silicon wafers falling within the tolerance of the target specification are packaged.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: April 30, 2019
    Assignee: Infineon Technologies AG
    Inventors: Johannes Freund, Thomas Wuebben, Helmut Oefner, Hans-Joachim Schulze
  • Patent number: 10276656
    Abstract: Epitaxy troughs are formed in a semiconductor substrate, wherein a matrix section of the semiconductor substrate laterally separates the epitaxy troughs and comprises a first semiconductor material. Crystalline epitaxy regions of a second semiconductor material are formed in the epitaxy troughs, wherein the second semiconductor material differs from the first semiconductor material in at least one of porosity, impurity content or defect density. From the epitaxy regions at least main body portions of semiconductor bodies of the semiconductor devices are formed.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: April 30, 2019
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Frank Hille, Andre Brockmeier, Francisco Javier Santos Rodriguez, Daniel Schloegl, Hans-Joachim Schulze
  • Publication number: 20190123148
    Abstract: A method for forming a silicon carbide semiconductor device includes forming at least one graphene layer on a surface of a semiconductor substrate and forming a silicon carbide layer of the silicon carbide semiconductor device on the at least one graphene layer. At least one of forming the silicon carbide layer and forming the at least one graphene layer includes: heating the semiconductor substrate an inert gas atmosphere until a predefined temperature is reached.
    Type: Application
    Filed: December 18, 2018
    Publication date: April 25, 2019
    Inventors: Roland Rupp, Guenther Ruhl, Hans-Joachim Schulze
  • Publication number: 20190123193
    Abstract: In an embodiment, a semiconductor device is provided. The semiconductor device includes: a semiconductor body of a first conductivity type having opposing first and second major surfaces; a gate arranged in a trench extending into the semiconductor body from the first major surface; a body region of a second conductivity type; a source region of the first conductivity type arranged on the body region and having first and second dopant species. The source region forms a pn-junction with the body junction, the pn-junction being arranged at a depth dpn from the first major surface, wherein 50 nm<dpn<300 nm. A drain region of the first conductivity type is arranged in the semiconductor body under the trench.
    Type: Application
    Filed: October 19, 2018
    Publication date: April 25, 2019
    Inventors: Anton Mauder, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder
  • Patent number: 10269896
    Abstract: A method of manufacturing semiconductor devices in a semiconductor wafer comprises forming charge compensation device structures in the semiconductor wafer. An electric characteristic related to the charge compensation device structures is measured. At least one of proton irradiation and annealing parameters are adjusted based on the measured electric characteristic. The semiconductor wafer is irradiated with protons and annealed based on the at least one of the adjusted proton irradiation and annealing parameters. Laser beam irradiation parameters are adjusted with respect to different positions on the semiconductor wafer based on the measured electric characteristic. The semiconductor wafer is irradiated with a photon beam at the different positions on the wafer based on the photon beam irradiation parameters.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: April 23, 2019
    Assignee: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Hans Weber, Wolfgang Jantscher, Hans-Joachim Schulze
  • Patent number: 10263101
    Abstract: A method of processing a semiconductor device, comprising: providing a semiconductor body having dopants of a first conductivity type; forming at least one trench that extends into the semiconductor body along a vertical direction, the trench being laterally confined by two trench sidewalls and vertically confined by a trench bottom; applying a substance onto at least a section of a trench surface formed by one of the trench sidewalls and/or the trench bottom of the at least one trench, such that applying the substance includes preventing that the substance is applied to the other of the trench sidewalls; and diffusing of the applied substance from the section into the semiconductor body, thereby creating, in the semiconductor body, a semiconductor region having dopants of a second conductivity type and being arranged adjacent to the section.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: April 16, 2019
    Assignee: Infineon Technologies AG
    Inventors: Thomas Wuebben, Peter Irsigler, Hans-Joachim Schulze
  • Publication number: 20190103480
    Abstract: A semiconductor device includes: a drift region formed in a semiconductor substrate; a body region above the drift region; an active gate trench extending from a first main surface and into the body region and including a first electrode coupled to a gate potential; a source region formed in the body region adjacent to the gate trench and coupled to a source potential; a first body trench extending from the first main surface and into the body region and including a second electrode coupled to the source potential; and an inactive gate trench extending from the first main surface and into the body region and including a third electrode coupled to the gate potential. A conductive channel is present along the active gate trench when the gate potential is at an on-voltage, whereas no conductive channel is present along the inactive gate trench for the same gate potential condition.
    Type: Application
    Filed: November 13, 2018
    Publication date: April 4, 2019
    Inventors: Maria Cotorogea, Frank Wolter, Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina-Schmidl
  • Patent number: 10249746
    Abstract: A superjunction bipolar transistor includes an active transistor cell area that includes active transistor cells electrically connected to a first load electrode at a front side of a semiconductor body. A superjunction area overlaps the active transistor cell area and includes a low-resistive region and a reservoir region outside of the low-resistive region. The low-resistive region includes a first superjunction structure with a first vertical extension with respect to a first surface at the front side of the semiconductor body. The reservoir region includes no superjunction structure such that the reservoir region includes the semiconductor body that extends from a region located at the first surface to a drain region.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: April 2, 2019
    Assignee: Infineon Technologies AG
    Inventors: Frank Dieter Pfirsch, Franz-Josef Niedernostheide, Hans-Joachim Schulze, Stephan Voss
  • Patent number: 10243066
    Abstract: A method of producing a semiconductor device is presented. The method comprises: providing a semiconductor substrate having a surface; epitaxially growing, along a vertical direction (Z) perpendicular to the surface, a back side emitter layer on top of the surface, wherein the back side emitter layer has dopants of a first conductivity type or dopants of a second conductivity type complementary to the first conductivity type; epitaxially growing, along the vertical direction (Z), a drift layer having dopants of the first conductivity type above the back side emitter layer, wherein a dopant concentration of the back side emitter layer is higher than a dopant concentration of the drift layer; and creating, either within or on top of the drift layer, a body region having dopants of the second conductivity type, a transition between the body region and the drift layer forming a pn-junction (Zpn).
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: March 26, 2019
    Assignee: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Daniel Schloegl, Johannes Baumgartl, Matthias Kuenle, Erwin Lercher, Hans-Joachim Schulze, Christoph Weiss
  • Publication number: 20190088482
    Abstract: A first dose of first dopants is introduced into a semiconductor body having a first surface. A thickness of the semiconductor body is increased by forming a first semiconductor layer on the first surface of the semiconductor body. While forming the first semiconductor layer a final dose of doping in the first semiconductor layer is predominantly set by introducing at least 20% of the first dopants from the semiconductor body into the first semiconductor layer.
    Type: Application
    Filed: September 19, 2018
    Publication date: March 21, 2019
    Inventors: Hans-Joachim Schulze, Johannes Baumgartl, Helmut Oefner
  • Publication number: 20190081143
    Abstract: A method for manufacturing a semiconductor device includes: providing a carrier wafer and a silicon carbide wafer; forming a first graphene material on a first side of the silicon carbide wafer; bonding the first side of the silicon carbide wafer with the first graphene material to the carrier wafer; and splitting the silicon carbide wafer bonded to the carrier wafer into a silicon carbide layer thinner than the silicon carbide wafer and a residual silicon carbide wafer, the silicon carbide layer remaining bonded to the carrier wafer during the splitting.
    Type: Application
    Filed: November 13, 2018
    Publication date: March 14, 2019
    Inventors: Guenther Ruhl, Gunther Lippert, Hans-Joachim Schulze, Thomas Zimmer
  • Patent number: 10229990
    Abstract: A semiconductor device includes a first IGBT cell having a second-type doped drift zone and a desaturation semiconductor structure for desaturating a charge carrier concentration in the first IGBT cell. The desaturation semiconductor structure includes a first-type doped region forming a pn-junction with the drift zone and two trenches arranged in the first-type doped region and arranged beside the first IGBT cell in a lateral direction. The two trenches confine a mesa region including a first-type doped desaturation channel region and a first-type doped body region at least in the lateral direction. The desaturation channel region and the body region adjoin each other, and the desaturation channel region is a depletable region.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: March 12, 2019
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Hans-Joachim Schulze
  • Publication number: 20190074831
    Abstract: Devices and methods are provided where a control terminal resistance of a transistor device is set depending on operating conditions within a specified range of operating conditions.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 7, 2019
    Inventors: Anton Mauder, Martina Seider-Schmidt, Hans-Joachim Schulze, Oliver Hellmund, Sebastian Schmidt, Peter Irsigler
  • Publication number: 20190074352
    Abstract: A first part of a semiconductor body is provided. Impurities are introduced into the first part of the semiconductor body, The impurities act as recombination centers in the semiconductor body and form a recombination Zone, and the impurities include at least a heavy metal. A second part of the semiconductor body is epitaxially produced on the first part after introducing the impurities in the first part. During epitaxially producing the second part of the semiconductor body on the first part of the semiconductor body, impurities in the first part of the semiconductor body are diffused to the second part of the semiconductor body.
    Type: Application
    Filed: November 6, 2018
    Publication date: March 7, 2019
    Inventors: Frank Pfirsch, Hans-Joachim Schulze
  • Publication number: 20190074212
    Abstract: A method of manufacturing a semiconductor device includes forming an auxiliary mask including a plurality of mask openings on a main surface of a crystalline semiconductor substrate. A porous structure is formed in the semiconductor substrate. The porous structure includes a porous layer at a distance to the main surface and porous columns that extend from the porous layer into direction of the main surface and that are laterally separated from each other by a non-porous portion. A non-porous device layer is formed on the non-porous portion and on the porous columns.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 7, 2019
    Inventors: Ingo Muri, Bernhard Goller, Iris Moder, Hans-Joachim Schulze
  • Patent number: 10224206
    Abstract: Disclosed is a bipolar semiconductor device, comprising a semiconductor body having a first surface; and a base region of a first doping type and a first emitter region in the semiconductor body, wherein the first emitter region adjoins the first surface and comprises a plurality of first type emitter regions of a second doping type complementary to the first doping type, a plurality of second type emitter regions of the second doping type, a plurality of third type emitter regions of the first doping type, and a recombination region comprising recombination centers, wherein the first type emitter regions and the second type emitter regions extend from the first surface into the semiconductor body, wherein the first type emitter regions have a higher doping concentration and extend deeper into the semiconductor body from the first surface than the second type emitter regions, wherein the third type emitter regions adjoin the first type emitter regions and the second type emitter regions, and wherein the recom
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: March 5, 2019
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Roman Baburske, Christian Jaeger, Franz Josef Niedernostheide, Hans-Joachim Schulze, Antonio Vellei