Patents by Inventor Hans-Joachim Schulze

Hans-Joachim Schulze has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10431681
    Abstract: A semiconductor device includes a gate trench of at least one transistor structure extending into a semiconductor substrate. The gate trench includes at least one sidewall having a bevel portion located adjacent to a bottom of the gate trench. The at least one sidewall of the gate trench is formed by the semiconductor substrate. An angle between the bevel portion and a lateral surface of the semiconductor substrate is between 110? and 160°. A lateral dimension of the bevel portion is larger than 50 nm. Methods for forming the semiconductor device are also provided.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: October 1, 2019
    Assignee: Infineon Technologies AG
    Inventors: Jens Peter Konrath, Hans-Joachim Schulze
  • Publication number: 20190295848
    Abstract: A semiconductor device and method is disclosed. In one example, the method for forming a semiconductor device includes forming a trench extending from a front side surface of a semiconductor substrate into the semiconductor substrate. The method includes forming of material to be structured inside the trench. Material to be structured is irradiated with a tilted reactive ion beam at a non-orthogonal angle with respect to the front side surface such that an undesired portion of the material to be structured is removed due to the irradiation with the tilted reactive ion beam while an irradiation of another portion of the material to be structured is masked by an edge of the trench.
    Type: Application
    Filed: June 14, 2019
    Publication date: September 26, 2019
    Applicant: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Anton Mauder, Hans-Joachim Schulze, Werner Schustereder
  • Publication number: 20190296125
    Abstract: A method includes providing a first layer of epitaxial silicon carbide supported by a silicon carbide substrate, providing a second layer of epitaxial silicon carbide on the first layer, forming a plurality of semiconductor devices in the second layer, and separating the substrate from the second layer at the first layer. The first layer includes a plurality of voids.
    Type: Application
    Filed: March 21, 2019
    Publication date: September 26, 2019
    Inventors: Hans-Joachim Schulze, Roland Rupp, Francisco Javier Santos Rodriguez
  • Publication number: 20190288094
    Abstract: According to an embodiment of a semiconductor device, the semiconductor device includes a semiconductor mesa having source zones arranged along a longitudinal axis of the semiconductor mesa and at least one body zone forming first pn junctions with the source zones and a second pn junction with a drift zone. The semiconductor device further includes stripe-shaped electrode structures on opposite sides of the semiconductor mesa and separation regions between neighboring ones of the source zones. At least one of the electrode structures includes a gate electrode. In the separation regions, at least one of (i) a capacitive coupling between the gate electrode and the semiconductor mesa and (ii) a conductivity of majority charge carriers of the drift zone is lower than outside of the separation regions.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Inventors: Roman Baburske, Matteo Dainese, Peter Lechner, Hans-Joachim Schulze, Johannes Georg Laven
  • Publication number: 20190288088
    Abstract: A power semiconductor device having a semiconductor body configured to conduct a load current is disclosed. In one example, the device includes a source region having dopants of a first conductivity type; a semiconductor channel region implemented in the semiconductor body and separating the source region from a remaining portion of the semiconductor body; a trench of a first trench type extending in the semiconductor body along an extension direction and being arranged adjacent to the semiconductor channel region, the trench of the first trench type including a control electrode that is insulated from the semiconductor body. The semiconductor body further comprises: a barrier region and a drift volume having at least a first drift region wherein the barrier region couples the first drift region with the semiconductor channel region.
    Type: Application
    Filed: May 24, 2019
    Publication date: September 19, 2019
    Applicant: Infineon Technologies AG
    Inventors: Roman Baburske, Markus Bina, Hans-Joachim Schulze, Oana Julia Spulber
  • Publication number: 20190279922
    Abstract: A semiconductor device includes a bonding pad that includes a base portion having a base layer. A bond wire or clip is bonded to a bonding region of a main surface of the bonding pad. A supplemental structure is in direct contact with the base portion next to the bonding region. A specific heat capacity of the supplemental structure is higher than a specific heat capacity of the base layer.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 12, 2019
    Inventors: Anton Mauder, Hans-Joachim Schulze
  • Patent number: 10410911
    Abstract: A method of fabricating a semiconductor device includes forming a buried insulation region within a substrate by processing the substrate using etching and deposition processes. A semiconductor layer is formed over the buried insulation region at a first side of the substrate. Device regions are formed in the semiconductor layer. The substrate is thinned from a second side of the substrate to expose the buried insulation region. The buried insulation region is selectively removed to expose a bottom surface of the substrate. A conductive region is formed under the bottom surface of the substrate.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: September 10, 2019
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Carsten Schaeffer, Andreas Moser, Matthias Kuenle, Matteo Dainese, Roland Rupp, Hans-Joachim Schulze
  • Patent number: 10411097
    Abstract: Representative implementations of devices and techniques provide an optimized layer for a semiconductor component. In an example, a doped portion of a wafer, forming a substrate layer may be transferred from the wafer to an acceptor, or handle wafer. A component layer may be applied to the substrate layer. The acceptor wafer is detached from the substrate layer. In some examples, further processing may be executed with regard to the substrate and/or component layers.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: September 10, 2019
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Jens Peter Konrath, Roland Rupp, Christian Hecht
  • Patent number: 10404250
    Abstract: Transistor devices are described that include a first transistor and a second transistor coupled in parallel between a first terminal and a second terminal. The second transistor is based on a wide bandgap semiconductor material. The second transistor has a breakthrough voltage lower than a breakthrough voltage of the first transistor over a predetermined operating range. The predetermined operating range comprises at least an operating range for which the transistor device is specified.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: September 3, 2019
    Assignee: Infineon Technologies AG
    Inventors: Thomas Basler, Roman Baburske, Johannes Georg Laven, Franz-Josef Niedernostheide, Hans-Joachim Schulze
  • Patent number: 10403556
    Abstract: A semiconductor device includes a drift structure formed in a semiconductor body. The drift structure forms a first pn junction with a body zone of a transistor cell. A gate structure extends from a first surface of the semiconductor body into the drift structure. A heat sink structure extends from the first surface into the drift structure. A thermal conductivity of the heat sink structure is greater than a thermal conductivity of the gate structure and/or a thermal capacity of the heat sink structure is greater than a thermal capacity of the gate structure.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 3, 2019
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Peter Irsigler, Joachim Mahler, Guenther Ruhl, Hans-Joachim Schulze, Markus Zundel
  • Patent number: 10396170
    Abstract: A semiconductor device includes a transistor doping region of a vertical transistor structure arranged in a semiconductor substrate. Additionally, the semiconductor device includes a graphene layer portion located adjacent to at least a portion of the transistor doping region at a surface of the semiconductor substrate. The semiconductor device further includes a transistor wiring structure located adjacent to the graphene layer portion.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 27, 2019
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Guenther Ruhl, Roland Rupp
  • Publication number: 20190259863
    Abstract: A chip includes a semiconductor body coupled to a first and a second load terminal. The semiconductor body includes an active region including a plurality of breakthrough cells, each of the breakthrough cells includes: an insulation structure; a drift region; an anode region, the anode region being electrically connected to the first load terminal and disposed in contact with the first load terminal; a first barrier region arranged in contact with each of the anode region and the insulation structure, where the first barrier region of the plurality of breakthrough cells forms a contiguous semiconductor layer; a second barrier region separating each of the anode region and at least a part of the first barrier region from the drift region; and a doped contact region arranged in contact with the second load terminal, where the drift region is positioned between the second barrier region and the doped contact region.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 22, 2019
    Applicant: Infineon Technologies Austria AG
    Inventors: Markus BINA, Thomas BASLER, Matteo DAINESE, Hans-Joachim SCHULZE
  • Publication number: 20190259842
    Abstract: A semiconductor component includes a field effect transistor structure in a SiC semiconductor body having a gate structure at a first surface of the SiC semiconductor body and a drift zone of a first conductivity type. A zone of the first conductivity type is formed in a vertical direction between a semiconductor region of a second conductivity type and the drift zone. The zone is spaced apart from the gate structure and is at a maximal distance of 1 ?m from the semiconductor region in the vertical direction.
    Type: Application
    Filed: February 21, 2019
    Publication date: August 22, 2019
    Inventors: Thomas Basler, Hans-Joachim Schulze, Ralf Siemieniec
  • Publication number: 20190259841
    Abstract: The disclosure relates to a semiconductor device having a SiC semiconductor body. The SiC semiconductor body includes a first semiconductor region of a first conductivity type and a second semiconductor region of a second conductivity type. The first semiconductor region is electrically contacted at a first surface of the SiC semiconductor body and forms a pn junction with the second semiconductor region. The first semiconductor region and the second semiconductor region are arranged one above the other in a vertical direction perpendicular to the first surface. The first semiconductor region has a first dopant species and a second dopant species.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 22, 2019
    Inventors: Andre Rainer Stegner, Hans-Joachim Schulze
  • Patent number: 10388722
    Abstract: A power semiconductor device is disclosed. In one example, the device comprises: a semiconductor body comprising a drift region, the drift region having dopants of a first conductivity type; an active region having at least one power cell; least partially into the semiconductor body; the at least one power cell being configured to conduct a load current between said terminals and to block a blocking voltage applied between said terminals; an edge that laterally terminates the semiconductor body; and a non-active termination structure arranged in between the edge and the active region. The termination structure comprises: at least one doped semiconductor region implemented in the semiconductor body; a conductor structure, and an ohmic path that electrically couples the conductor structure with an electrical potential of the first load terminal.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: August 20, 2019
    Assignee: Infineon Technologies AG
    Inventors: Elmar Falck, Josef-Georg Bauer, Jens Brandenburg, Hans-Joachim Schulze
  • Patent number: 10388776
    Abstract: A semiconductor device includes: a drift region formed in a semiconductor substrate; a body region above the drift region; an active gate trench extending from a first main surface and into the body region and including a first electrode coupled to a gate potential; a source region formed in the body region adjacent to the gate trench and coupled to a source potential; a first body trench extending from the first main surface and into the body region and including a second electrode coupled to the source potential; and an inactive gate trench extending from the first main surface and into the body region and including a third electrode coupled to the gate potential. A conductive channel is present along the active gate trench when the gate potential is at an on-voltage, whereas no conductive channel is present along the inactive gate trench for the same gate potential condition.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 20, 2019
    Assignee: Infineon Technologies AG
    Inventors: Maria Cotorogea, Frank Wolter, Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina-Schmidl
  • Publication number: 20190249330
    Abstract: In accordance with a method of manufacturing CZ silicon wafers, a parameter of at least two of the CZ silicon wafers is measured. A group of the CZ silicon wafers falling within a tolerance of a target specification is determined. The group of the CZ silicon wafers is divided into sub-groups taking into account the measured parameter. An average value of the parameter of the CZ silicon wafers of each sub-group differs among the sub-groups, and a tolerance of the parameter of the CZ silicon wafers of each sub-group is smaller than a tolerance of the parameter of the target specification. A labeling configured to distinguish between the CZ silicon wafers of different sub-groups is prepared. The CZ silicon wafers falling within the tolerance of the target specification are packaged.
    Type: Application
    Filed: March 29, 2019
    Publication date: August 15, 2019
    Applicant: Infineon Technologies AG
    Inventors: Johannes Freund, Thomas Wuebben, Helmut Oefner, Hans-Joachim Schulze
  • Patent number: 10381467
    Abstract: According to an embodiment of a semiconductor device, the device includes first and second trenches formed in a semiconductor body and an electrode disposed in each of the trenches. One of the electrodes is a gate electrode, and the other electrode is electrically disconnected from the gate electrode. The semiconductor device further includes a semiconductor mesa between the trenches. The semiconductor mesa includes a separation region and at least one of a source region and a body region located in the semiconductor mesa. A drift zone is provided below the at least one of the source region and the body region. In the separation region, at least one of (i) a capacitive coupling between the gate electrode and the semiconductor mesa and (ii) a conductivity of majority charge carriers of the drift zone is lower than outside of the separation region.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: August 13, 2019
    Assignee: Infineon Technologies AG
    Inventors: Roman Baburske, Matteo Dainese, Peter Lechner, Hans-Joachim Schulze, Johannes Georg Laven
  • Publication number: 20190237575
    Abstract: A semiconductor component includes a semiconductor body having opposing first surface and second surfaces, and a side surface surrounding the semiconductor body. The semiconductor component also includes an active region including a first semiconductor region of a first conductivity type, which is electrically contacted via the first surface, and a second semiconductor region of a second conductivity type, which is electrically contacted via the second surface. The semiconductor component further includes an edge termination region arranged in a lateral direction between the first semiconductor region of the active region and the side surface, and includes a first edge termination structure and a second edge termination structure. The second edge termination structure is arranged in the lateral direction between the first edge termination structure and the side surface and extends from the first surface in a vertical direction more deeply into the semiconductor body than the first edge termination structure.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 1, 2019
    Inventors: Anton Mauder, Hans-Joachim Schulze, Matteo Dainese, Elmar Falck, Franz-Josef Niedernostheide, Manfred Pfaffenlehner
  • Patent number: 10367067
    Abstract: A semiconductor device includes a semiconductor body having opposite first and second surfaces, a drift or base zone in the semiconductor body and an oxygen diffusion barrier in the semiconductor body. The drift or base zone is located between the first surface and the oxygen diffusion barrier and directly adjoins the oxygen diffusion barrier. The semiconductor device further includes first and second load terminal contacts. At least one of the first and the second load terminal contacts is electrically connected to the semiconductor body through the first surface.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: July 30, 2019
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Johannes Baumgartl