Patents by Inventor Hans-Joachim Schulze

Hans-Joachim Schulze has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190066977
    Abstract: An ion implantation method includes changing an ion acceleration energy and/or an ion beam current density of an ion beam while effecting a relative movement between a semiconductor substrate and the ion beam impinging on a surface of the semiconductor substrate.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 28, 2019
    Inventors: Moriz Jelinek, Michael Brugger, Hans-Joachim Schulze, Werner Schustereder, Peter Zupan
  • Patent number: 10217638
    Abstract: A method for removing crystal originated particles from a crystalline silicon body having opposite first and second surfaces includes: increasing a surface area of at least one of the first and second surfaces by an etch process; and oxidizing the increased surface area at a temperature of at least 1000° C. and for a duration of at least 20 minutes.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: February 26, 2019
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Peter Irsigler
  • Patent number: 10217837
    Abstract: A semiconductor device includes a semiconductor mesa having source zones and at least one body zone forming first pn junctions with the source zones and a second pn junction with a drift zone. Electrode structures are provided on opposite sides of the semiconductor mesa, at least one of the electrode structures having a gate electrode configured to control a charge carrier flow through the at least one body zone. A separation region is arranged along an extension direction of the semiconductor mesa. In the separation region, the semiconductor mesa has a constricted portion that is partially or completely oxidized. Additional semiconductor device embodiments are described.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: February 26, 2019
    Assignee: Infineon Technologies AG
    Inventors: Roman Baburske, Matteo Dainese, Peter Lechner, Hans-Joachim Schulze, Johannes Georg Laven
  • Patent number: 10211325
    Abstract: A semiconductor device includes a semiconductor body having opposite first and second sides. The semiconductor device further includes a drift zone in the semiconductor body between the second side and a pn junction. A profile of net doping of the drift zone along at least 50% of a vertical extension of the drift zone between the first and second sides is undulated and includes doping peak values between 1×1013 cm?3 and 5×1014 cm?3. A device blocking voltage Vbr is defined by a breakdown voltage of the pn junction between the drift zone and a semiconductor region of opposite conductivity type that is electrically coupled to the first side of the semiconductor body.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: February 19, 2019
    Assignee: Infineon Technologies AG
    Inventors: Elmar Falck, Andreas Haertl, Manfred Pfaffenlehner, Francisco Javier Santos Rodriguez, Daniel Schloegl, Hans-Joachim Schulze, Andre Stegner, Johannes Georg Laven
  • Patent number: 10211057
    Abstract: A transistor component includes in a semiconductor body a source zone and a drift zone of a first conduction type, and a body zone of a second conduction type complementary to the first conduction type, the body zone arranged between the drift zone and the source zone. The transistor component further includes a source electrode in contact with the source zone and the body zone, a gate electrode adjacent the body zone and dielectrically insulated from the body zone by a gate dielectric layer, and a diode structure connected between the drift zone and the source electrode. The diode structure includes a first emitter zone adjoining the drift zone in the semiconductor body, and a second emitter zone of the first conduction type adjoining the first emitter zone. The second emitter zone is connected to the source electrode and has an emitter efficiency ? of less than 0.7.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: February 19, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Anton Mauder, Thomas Raker, Hans-Joachim Schulze, Wolfgang Werner
  • Publication number: 20190051529
    Abstract: Disclosed is a method that includes forming a plurality of semiconductor arrangements one above the other. In this method, forming each of the plurality of semiconductor arrangements includes: forming a semiconductor layer; forming a plurality of trenches in a first surface of the semiconductor layer; and implanting dopant atoms of at least one of a first type and a second type into at least one of a first sidewall and a second sidewall of each of the plurality of trenches of the semiconductor layer.
    Type: Application
    Filed: October 12, 2018
    Publication date: February 14, 2019
    Inventors: Anton Mauder, Hans Weber, Franz Hirler, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder, Maximilian Treiber, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20190051488
    Abstract: An implantation apparatus includes a scanning assembly that effects a relative movement between an ion beam and a semiconductor substrate along a first scan direction and along a second scan direction orthogonal to the first scan direction. A tilt assembly changes a tilt angle ? between a beam axis of the ion beam and a normal to a main surface of the semiconductor substrate from a first tilt angle ?1 to a second tilt angle ?2, wherein an angular span ?? between the first tilt angle ?1 and the second tilt angle ?2 is at least 5°. A control unit controls the tilt assembly to continuously change the tilt angle ? during the relative movement between the ion beam and the semiconductor substrate.
    Type: Application
    Filed: August 7, 2018
    Publication date: February 14, 2019
    Inventors: Werner Schustereder, Moriz Jelinek, Hans-Joachim Schulze
  • Patent number: 10205011
    Abstract: Some embodiments relate to a method for forming a semiconductor device. The method includes forming a source region of a field effect transistor structure in a semiconductor substrate. The method further includes forming an oxide layer. The method also includes incorporating atoms of at least one atom type of a group of atom types into at least a part of the source region of the field effect transistor structure after forming the oxide layer. The group of atom types includes chalcogen atoms, silicon atoms and argon atoms.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: February 12, 2019
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Philip Christoph Brandt, Andre Rainer Stegner
  • Publication number: 20190043971
    Abstract: A method for forming semiconductor device includes providing a semiconductor substrate having an initial surface oxygen concentration in a surface region of less than 6×1017 cm?3, forming an epitaxial layer on a first side of the semiconductor substrate, and implanting dopants into the epitaxial layer. An optional thermal anneal is carried out prior to forming the epitaxial layer and/or a thermal treatment is carried out after implanting dopants.
    Type: Application
    Filed: August 3, 2018
    Publication date: February 7, 2019
    Inventors: Daniel Hölzl, Henning Kraack, Gabor Mezoesi, Hans-Joachim Schulze, Waqas Mumtaz Syed
  • Patent number: 10199332
    Abstract: A semiconductor device includes a power transistor in a semiconductor substrate portion, where the semiconductor substrate portion includes a central portion and a kerf, components of the power transistor are arranged in the central portion, and the central portion has a thickness d. The semiconductor device also includes a support element disposed over a main surface of the central portion, where the support element has a smallest lateral extension t at a side adjacent to the main surface of the semiconductor substrate portion and a height h, where 0.1×h?d?4×h and 0.1×h?t?1.5×h.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: February 5, 2019
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Oliver Hellmund, Peter Irsigler, Sebastian Schmidt, Hans-Joachim Schulze, Martina Seider-Schmidt
  • Patent number: 10199526
    Abstract: A method for forming a semiconductor device includes forming an amorphous semiconductor layer adjacent to a lightly doped region of a semiconductor wafer. The lightly doped region forms at least part of a back side of the semiconductor wafer, and the lightly doped region has a first conductivity type. The method further includes incorporating dopants into the amorphous semiconductor layer during or after forming the amorphous semiconductor layer. The method further includes annealing the amorphous semiconductor layer to transform at least a part of the amorphous semiconductor layer into a substantially monocrystalline semiconductor layer and to form a highly doped region in the monocrystalline semiconductor layer at the back side of the semiconductor wafer. The highly doped region has the first conductivity type.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: February 5, 2019
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Johannes Hacker
  • Patent number: 10192955
    Abstract: A method of manufacturing a semiconductor device includes determining information that indicates an extrinsic dopant concentration and an intrinsic oxygen concentration in a semiconductor wafer. On the basis of information about the extrinsic dopant concentration and the intrinsic oxygen concentration as well as information about a generation rate or a dissociation rate of oxygen-related thermal donors in the semiconductor wafer, a process temperature gradient is determined for generating or dissociating oxygen-related thermal donors to compensate for a difference between a target dopant concentration and the extrinsic dopant concentration.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: January 29, 2019
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Moriz Jelinek, Hans-Joachim Schulze, Werner Schustereder, Michael Stadtmueller
  • Patent number: 10186587
    Abstract: A power semiconductor device has a semiconductor body configured to conduct a load current in parallel to an extension direction between first and second load terminals of the power semiconductor device. The semiconductor body includes a doped contact region electrically connected to the second load terminal, a doped drift region having a dopant concentration that is smaller than a dopant concentration of the contact region, and an epitaxially grown doped transition region separated from the second load terminal by the contact region and that couples the contact region to the drift region. An upper subregion of the transition region is in contact with the drift region, and a lower subregion of the transition region is in contact with the contact region. The transition region has a dopant concentration of at least 0.5*1015 cm?3 for at least 5% of the total extension of the transition region in the extension direction.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: January 22, 2019
    Assignee: Infineon Technologies AG
    Inventors: Matthias Kuenle, Daniel Schloegl, Hans-Joachim Schulze, Christoph Weiss
  • Publication number: 20190019887
    Abstract: A charge-compensation semiconductor device includes a source metallization spaced apart from a gate metallization, and a semiconductor body including opposing first and second sides, a drift region, a plurality of body regions adjacent the first side and each forming a respective first pn-junction with the drift region, and a plurality of compensation regions arranged between the second side and the body regions. Each compensation region forms a respective further pn-junction with the drift region. A plurality of gate electrodes in Ohmic connection with the gate metallization is arranged adjacent the first side and separated from the body regions and the drift region by a dielectric region. A resistive current path is formed between one of the gate electrodes and a first one of the compensation regions, or between the first one of the compensation regions and a further metallization spaced apart from the source metallization and the gate metallization.
    Type: Application
    Filed: July 10, 2018
    Publication date: January 17, 2019
    Inventors: Armin Willmeroth, Franz Hirler, Anton Mauder, Frank Dieter Pfirsch, Hans-Joachim Schulze, Uwe Wahl
  • Patent number: 10177033
    Abstract: A method for forming a semiconductor device includes forming a plurality of non-semiconductor material portions at a first side of a semiconductor substrate; forming semiconductor material on the plurality of non-semiconductor material portions to bury the plurality of non-semiconductor material portions within semiconductor material; removing at least a portion of the semiconductor substrate from a second side of the semiconductor substrate to uncover the plurality of non-semiconductor material portions at a backside of the semiconductor device; and forming a rough surface at the backside of the semiconductor device by removing at least a subset of the plurality of non-semiconductor material portions while at least a part of a semiconductor material located laterally between the plurality of non-semiconductor material portions remains or by removing at least a part of a semiconductor material located laterally between the plurality of non-semiconductor material portions while the plurality of non-semiconduct
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: January 8, 2019
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Oliver Hellmund, Peter Irsigler, Sebastian Schmidt, Hans-Joachim Schulze, Martina Seider-Schmidt
  • Patent number: 10177230
    Abstract: A semiconductor device includes a first semiconductor region including a first semiconductor material and a second semiconductor region adjoining the first semiconductor region, the second semiconductor region including a second semiconductor material different from the first semiconductor material. The semiconductor device further includes at least one of a drift zone and a base zone in the first semiconductor region, and at least one type of deep-level dopant in an emitter region of the second semiconductor region. The at least one type of deep-level dopant has a distance to the valence or conduction band of at least 100 meV.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: January 8, 2019
    Assignee: Infineon Technologies AG
    Inventors: Stephan Voss, Franz-Josef Niedernostheide, Hans-Joachim Schulze
  • Patent number: 10170497
    Abstract: According to various embodiments, an electronic device may include a carrier including at least a first region and a second region being laterally adjacent to each other; an electrically insulating structure arranged in the first region of the carrier, wherein the second region of the carrier is free of the electrically insulating structure; a first electronic component arranged in the first region of the carrier over the electrically insulating structure; a second electronic component arranged in the second region of the carrier; wherein the electrically insulating structure includes one or more hollow chambers, wherein the sidewalls of the one or more hollow chambers are covered with an electrically insulating material.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: January 1, 2019
    Inventors: Thoralf Kautzsch, Alessia Scire, Steffen Bieselt, Franz Hirler, Anton Mauder, Wolfgang Scholz, Hans-Joachim Schulze, Francisco Javier Santos Rodriguez
  • Patent number: 10164043
    Abstract: A semiconductor diode is provided. The semiconductor diode includes a monocrystalline silicon semiconductor body including a first semiconductor region of a first conductivity type extending to a first surface of the semiconductor body and having a first maximum doping concentration, and a second semiconductor region of a second conductivity type forming a pn-junction with the first semiconductor region. The semiconductor diode further includes a polycrystalline silicon semiconductor region of the first conductivity type having a second maximum doping concentration which is higher than the first maximum doping concentration and adjoining the first semiconductor region on the first surface, a first metallization arranged on the polycrystalline silicon semiconductor region and in electric contact with the polycrystalline semiconductor region, and an edge-termination structure arranged next to the first semiconductor region. Further, a method for producing a semiconductor diode is provided.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: December 25, 2018
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Philipp Seng
  • Patent number: 10164019
    Abstract: A method for forming a semiconductor device includes forming at least one graphene layer on a surface of a semiconductor substrate. The method further includes forming a silicon carbide layer on the at least one graphene layer.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: December 25, 2018
    Assignee: Infineon Technologies AG
    Inventors: Roland Rupp, Guenther Ruhl, Hans-Joachim Schulze
  • Publication number: 20180366541
    Abstract: First and second cell trench structures extend from a first surface into a semiconductor substrate. The first cell trench structure includes a first buried electrode and a first insulator layer between the first buried electrode and a semiconductor mesa separating the first and second cell trench structures. A capping layer covers the first surface. The capping layer is patterned to form an opening having a minimum width larger than a thickness of the first insulator layer. The opening exposes a first vertical section of the first insulator layer at the first surface. An exposed portion of the first insulator layer is removed to form a recess between the semiconductor mesa and the first buried electrode. A contact structure is in the opening and the recess. The contact structure electrically connects both a buried zone in the semiconductor mesa and the first buried electrode and allows for narrower semiconductor mesa width.
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Inventors: Johannes Georg Laven, Maria Cotorogea, Hans-Joachim Schulze, Haybat Itani, Erich Griebl, Andreas Haghofer