Patents by Inventor Hanyi Ding

Hanyi Ding has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120175612
    Abstract: A test structure for a through-silicon-via (TSV) in a semiconductor chip includes a first contact, the first contact being electrically connected to a first TSV; and a second contact, wherein the first contact, second contact, and the first TSV form a first channel, and a depth of the first TSV is determined based on a resistance of the first channel.
    Type: Application
    Filed: March 19, 2012
    Publication date: July 12, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hanyi Ding, Kai D. Feng, Ping-Chuan Wang, Zhijian Yang
  • Patent number: 8216912
    Abstract: A method, structure, and design structure for a through-silicon-via Wilkinson power divider. A method includes: forming an input on a first side of a substrate; forming a first leg comprising a first through-silicon-via formed in the substrate, wherein the first leg electrically connects the input and a first output; forming a second leg comprising a second through-silicon-via formed in the substrate, wherein the second leg electrically connects the input and a second output, and forming a resistor electrically connected between the first output and the second output.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: July 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Alvin J. Joseph, Wayne H. Woods, Jr.
  • Patent number: 8193878
    Abstract: A design structure, structure, and method for providing an on-chip variable delay transmission line with a fixed characteristic impedance. A method of manufacturing a transmission line structure includes forming a signal line of the transmission line structure, forming a first ground return structure that causes a first delay and a first characteristic impedance in the transmission line structure, and forming a second ground return structure that causes a second delay and a second characteristic impedance in the transmission line structure. The first delay is different from the second delay, and the first characteristic impedance is substantially the same as the second characteristic impedance.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: June 5, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Wayne H. Woods, Jr.
  • Publication number: 20120131776
    Abstract: A design structure, structure, and method for providing an on-chip variable delay transmission line with a fixed characteristic impedance. A method of manufacturing a transmission line structure includes forming a signal line of the transmission line structure, forming a first ground return structure that causes a first delay and a first characteristic impedance in the transmission line structure, and forming a second ground return structure that causes a second delay and a second characteristic impedance in the transmission line structure. The first delay is different from the second delay, and the first characteristic impedance is substantially the same as the second characteristic impedance.
    Type: Application
    Filed: February 2, 2012
    Publication date: May 31, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hanyi DING, Wayne H. WOODS, JR.
  • Publication number: 20120132992
    Abstract: A first field effect transistor includes a gate dielectric and a gate electrode located over a first portion of a top semiconductor layer in a semiconductor-on-insulator (SOI) substrate. A second field effect transistor includes a portion of a buried insulator layer and a source region and a drain region located underneath the buried insulator layer. In one embodiment, the gate electrode of the second field effect transistor is a remaining portion of the top semiconductor layer. In another embodiment, the gate electrode of the second field effect transistor is formed concurrently with the gate electrode of the first field effect transistor by deposition and patterning of a gate electrode layer. The first field effect transistor may be a high performance device and the second field effect transistor may be a high voltage device. A design structure for the semiconductor structure is also provided.
    Type: Application
    Filed: February 7, 2012
    Publication date: May 31, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Zhenrong Jin, Xuefeng Liu, Yun Shi
  • Patent number: 8188808
    Abstract: Branchline coupler structure using slow wave transmission line effect having both large inductance and large capacitance per unit length. The branchline coupler structure includes a plurality of quarter-wavelength transmission lines, at least one of which includes a high impedance arm and a low impedance arm. The high and low impedances are relative to each other. The high impedance arm includes a plurality of narrow cells and having an inductance of nL and a capacitance of C/n, and the low impedance arm includes a plurality of wide cells and having an inductance of L/n and capacitance of nC. The wide and narrow cells are relative to each other, and the wide and narrow cells are adjacent each other to form a signal layer having step discontinuous alternative widths.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: May 29, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Essam Mina, Guoan Wang, Wayne H. Woods, Jr.
  • Publication number: 20120104546
    Abstract: Structures with high-Q value inductors, design structure for high-Q value inductors and methods of fabricating such structures is disclosed herein. A method in a computer-aided design system for generating a functional design model of an inductor is also provided. The method includes: generating a functional representation of a plurality of vertical openings simultaneously formed in a substrate, wherein a first of the plurality of vertical openings is used as through silicon vias and is etched deeper than a second of the plurality of vertical openings used for high-Q inductors; generating a functional representation of a dielectric layer formed in the plurality of vertical openings; and generating a functional representation of a metal layer deposited on the dielectric layer in the plurality of vertical.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hanyi DING, Mete ERTURK, Robert A. GROVES, Zhong-Xiang HE, Peter J. LINGREN, Anthony K. STAMPER
  • Publication number: 20120102444
    Abstract: An on-chip tunable transmission line (t-line), methods of manufacture and design structures are provided. The structure includes a tunable transmission line (t-line) with fixed characteristic impedance comprising functionally-differentiated switches used for inductance and capacitance, respectively.
    Type: Application
    Filed: October 25, 2010
    Publication date: April 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hanyi DING, Guoan WANG, Wayne H. WOODS, JR.
  • Patent number: 8138857
    Abstract: A design structure, structure, and method for providing an on-chip variable delay transmission line with a fixed characteristic impedance. A method of manufacturing a transmission line structure includes forming a signal line of the transmission line structure, forming a first ground return structure that causes a first delay and a first characteristic impedance in the transmission line structure, and forming a second ground return structure that causes a second delay and a second characteristic impedance in the transmission line structure. The first delay is different from the second delay, and the first characteristic impedance is substantially the same as the second characteristic impedance.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Wayne H. Woods, Jr.
  • Patent number: 8138876
    Abstract: On-chip integrated variable inductors, methods of making and tuning an on-chip integrated variable inductor, and design structures embodying a circuit containing the on-chip integrated variable inductor. The inductor generally includes a signal line configured to carry an electrical signal, a ground line positioned in proximity to the signal line, and at least one control unit electrically coupled with the ground line. The at least one control unit is configured to open and close switch a current path connecting the ground line with a ground potential so as to change an inductance of the signal line.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Essam F. Mina, Wayne H. Woods
  • Patent number: 8120110
    Abstract: A first field effect transistor includes a gate dielectric and a gate electrode located over a first portion of a top semiconductor layer in a semiconductor-on-insulator (SOI) substrate. A second field effect transistor includes a portion of a buried insulator layer and a source region and a drain region located underneath the buried insulator layer. In one embodiment, the gate electrode of the second field effect transistor is a remaining portion of the top semiconductor layer. In another embodiment, the gate electrode of the second field effect transistor is formed concurrently with the gate electrode of the first field effect transistor by deposition and patterning of a gate electrode layer. The first field effect transistor may be a high performance device and the second field effect transistor may be a high voltage device. A design structure for the semiconductor structure is also provided.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: February 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Zhenrong Jin, Xuefeng Liu, Yun Shi
  • Patent number: 8120145
    Abstract: A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a substrate including a silicon layer. Furthermore, the design structure includes a metal layer on a bottom side of the silicon layer and a dielectric layer on a top side of the silicon layer. Additionally, the design structure includes a top-side interconnect of the through-silicon via bandpass filter on a surface of the dielectric layer and a plurality of contacts in the dielectric layer in contact with the top-side interconnect. Further, the design structure includes a plurality of through-silicon vias through the substrate and in contact with the plurality of contacts, respectively, and the metal layer.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: February 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Amit Bavisi, Hanyi Ding, Guoan Wang, Wayne H. Woods, Jr., Jiansheng Xu
  • Publication number: 20120032737
    Abstract: A Lange coupler having a first plurality of lines on a first level and a second plurality of lines on a second level. At least one line on the first level is cross-coupled to a respective line on the second level via electromagnetic waves traveling through the first and second plurality of lines. The first and second plurality of lines may be made of metal, and the first level may be higher than the second level. A substrate may be provided into which the first and second plurality of lines are etched so as to define an on-chip Lange coupler.
    Type: Application
    Filed: October 20, 2011
    Publication date: February 9, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hanyi Ding, Kwan Him Lam
  • Publication number: 20120025881
    Abstract: A method includes phase-shifting an output signal of a phase lock loop (PLL) circuit by applying an injection current to an output of a charge pump of a the PLL circuit. A circuit includes: a first phase lock loop (PLL) circuit and a second PLL circuit referenced to a same clock; a phase detector circuit that detects a phase difference between an output signal of the first PLL circuit and an output signal of the second PLL circuit; and an adjustable current source that applies an injection current to at least one of the first PLL circuit and the second PLL circuit based on an output of the phase detector circuit.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hanyi Ding, Kai D. Feng, Zhenrong Jin, Francis F. Szenher
  • Patent number: 8106728
    Abstract: The present invention generally relates to a circuit structure, design structure and method of manufacturing a circuit, and more specifically to a circuit structure and design structure for an on-chip slow wave transmission line band-stop filter and a method of manufacture. A structure includes an on-chip transmission line stub comprising a conditionally floating structure structured to provide increased capacitance to the on-chip transmission line stub when the conditionally floating structure is connected to ground.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: January 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Kwan H. Lam, Guoan Wang, Wayne H. Woods, Jr.
  • Publication number: 20120019313
    Abstract: A semiconductor switching device includes a field effect transistor and an inductor structure that provides a frequency dependent inductance in a parallel connection. During the off-state of the semiconductor switching device, the frequency dependent impedance component due to the off-state parasitic capacitance of the switching device is cancelled by the frequency dependent inductance component of the inductor structure, which provides a non-linear impedance as a function of frequency. The inductor structure provides less inductance at a higher operating frequency than at a lower operating frequency to provide more effective cancellation of two impedance components of the parasitic capacitance and the inductance. Thus, the semiconductor switching device can provide low parasitic coupling at multiple operating frequencies. The operating frequencies of the semiconductor switching device can be at gigahertz ranges for millimeter wave applications.
    Type: Application
    Filed: July 20, 2010
    Publication date: January 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wayne H. Woods, JR., Guoan Wang, Hanyi Ding
  • Publication number: 20110254168
    Abstract: An integrated circuit (IC) interconnect structure that includes a first via positioned in a dielectric and coupled to a high current device at one end, and a buffer metal segment positioned in a dielectric and coupled to the first via at an opposite end thereof. The buffer metal segment includes a plurality of electrically insulating inter-dielectric (ILD) pads forming an ILD cheesing pattern thereon, to direct current. The IC interconnect structure further includes a second via positioned in a dielectric formed over the buffer metal segment and coupled to the buffer metal segment at one end and a metal power line formed in a dielectric and coupled to the second via at an opposite end thereof. The use of the ILD pads on the buffer metal segment enables a more even distribution of current along the metal power line.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 20, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hanyi Ding, Ronald G. Filippi, Jong-Ru Guo, Ping-Chuan Wang
  • Patent number: 8035198
    Abstract: A through wafer via structure. The structure includes: a semiconductor substrate having a top surface and an opposite bottom surface; and an array of through wafer vias comprising at least one electrically conductive through wafer via and at least one electrically non-conductive through wafer via, each through wafer via of the array of through wafer vias extending from the top surface of the substrate to between greater than halfway to and all the way to the bottom surface of the substrate. Also methods for fabricating the though wafer via structure.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: October 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Alvin Jose Joseph, Anthony Kendall Stamper
  • Patent number: 8028406
    Abstract: Methods for fabricating a coplanar waveguide structure. The method may include forming first and second ground conductors and a signal conductor in a coplanar arrangement between the first and second ground conductors, forming a first coplanar array of substantially parallel shield conductors above the signal conductor and the first and second ground conductors, and forming a second coplanar array of substantially parallel shield conductors below the signal conductor and the first and second ground conductors. The method further includes forming a first plurality of conductive bridges located laterally between the signal conductor and the first ground conductor, and forming a second plurality of conductive bridges located laterally between the signal conductor and the second ground conductor. Each of the first plurality of conductive bridges connects one of the shield conductors in the first array with one of the shield conductors in the second array.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: October 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Essam F. Mina, Guoan Wang, Wayne H. Woods
  • Patent number: 8012814
    Abstract: A first portion of a top semiconductor layer of a semiconductor-on-insulator (SOI) substrate is protected, while a second portion of the top semiconductor layer is removed to expose a buried insulator layer. A first field effect transistor including a gate dielectric and a gate electrode located over the first portion of the top semiconductor layer is formed. A portion of the exposed buried insulator layer is employed as a gate dielectric for a second field effect transistor. In one embodiment, the gate electrode of the second field effect transistor is a remaining portion of the top semiconductor layer. In another embodiment, the gate electrode of the second field effect transistor is formed concurrently with the gate electrode of the first field effect transistor by deposition and patterning of a gate electrode layer.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Zhenrong Jin, Xuefeng Liu, Yun Shi