Patents by Inventor Hariklia Deligianni

Hariklia Deligianni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9865673
    Abstract: An on-chip magnetic structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: January 9, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20180005988
    Abstract: DC-DC power converters with GaN switches, magnetic inductors and CMOS power drivers integrated through face-to-face wafer bonding techniques are provided. In one aspect, an integrated DC-DC power converter includes: a Si CMOS chip having at least one Si CMOS transistor formed thereon; a GaN switch chip, bonded to the Si CMOS chip in a face-to-face manner, having at least one GaN transistor formed thereon; and an on-chip magnetic inductor present either on the Si CMOS chip or on the GaN switch chip. A method of forming an integrated DC-DC power converter is also provided.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 4, 2018
    Inventors: Hariklia Deligianni, Devendra K. Sadana, Edmund J. Sprogis, Naigang Wang
  • Publication number: 20180005741
    Abstract: A magnetic laminating structure and process for preventing substrate bowing include a first magnetic layer, at least one additional magnetic layer, and a dielectric spacer disposed between the first and at least one additional magnetic layers. The magnetic layers are characterized by defined tensile strength. To balance the tensile strength of the magnetic layer, the dielectric layer is selected to provide compressive strength so as to counteract the tendency of the wafer to bow as a consequence of the tensile strength imparted by the magnetic layer(s).
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Bruce B. Doris, Hariklia Deligianni, Eugene J. O'Sullivan, Naigang Wang
  • Publication number: 20180005740
    Abstract: A magnetic laminating structure and process for preventing substrate bowing include multiple film stack segments that include a first magnetic layer, at least one additional magnetic layer, and a dielectric spacer disposed between the first and at least one additional magnetic layers. A dielectric isolation layer is intermediate magnetic layers and on the sidewalls thereof. The magnetic layers are characterized by defined tensile strength and the multiple segments function to relive the stress as the magnetic laminating structure is formed, wherein the cumulative thickness of the magnetic layers is greater than 1 micron. Also described are methods for forming the magnetic laminating structure.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 4, 2018
    Inventors: Bruce B. Doris, Hariklia Deligianni, Eugene J. O'Sullivan, Naigang Wang
  • Patent number: 9859357
    Abstract: A magnetic laminating structure and process includes alternating layers of a magnetic material and a multilayered insulating material, wherein the multilayered insulating material is intermediate adjacent magnetic material layers and comprises a first insulating layer abutting at least one additional insulating layer, wherein the first insulating layer and the at least one additional insulating layer comprise different dielectric materials and/or are formed by a different deposition process, and wherein the layers of the magnetic material have a cumulative thickness greater than 1 micron.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: January 2, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Bruce B. Doris, Eugene J. O'Sullivan, Naigang Wang
  • Publication number: 20170334456
    Abstract: An embodiment of the invention provides a method to control a mechanical system based on the cognitive state of a user, where a first action is performed at an input device that is associated with the user. The cognitive state of the user is detected at the input device; and, a change to the first action is determined based on the cognitive state of the user. A controlled action is performed based on the recommended change. A system can include an input device associated with user, where a first action is performed at the input device. A processor connected to the input device detects the cognitive state of the user at the input device and determines a change to the first action based on the cognitive state of the user. A controller connected to the processor performs a controlled action based on the recommended change.
    Type: Application
    Filed: May 23, 2016
    Publication date: November 23, 2017
    Applicant: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Clifford A. Pickover, Anca Sailer
  • Patent number: 9822458
    Abstract: Techniques for electrodepositing selenium (Se)-containing films are provided. In one aspect, a method of preparing a Se electroplating solution is provided. The method includes the following steps. The solution is formed from a mixture of selenium oxide; an acid selected from the group consisting of alkane sulfonic acid, alkene sulfonic acid, aryl sulfonic acid, heterocyclic sulfonic acid, aromatic sulfonic acid and perchloric acid; and a solvent. A pH of the solution is then adjusted to from about 2.0 to about 3.0. The pH of the solution can be adjusted to from about 2.0 to about 3.0 by adding a base (e.g., sodium hydroxide) to the solution. A Se electroplating solution, an electroplating method and a method for fabricating a photovoltaic device are also provided.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: November 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Shafaat Ahmed, Hariklia Deligianni
  • Patent number: 9819269
    Abstract: Techniques for integrating DC-DC power converters with other on-chip circuitry are provided. In one aspect, an integrated DC-DC power converter includes: a GaN transistor chip having at least one GaN switch formed thereon; an interposer chip, bonded to the GaN transistor chip, having at least one power driver transistor formed thereon; TSVs present in the interposer chip adjacent to the power driver transistor and which connect the power driver transistor to the GaN switch; and an on-chip magnetic inductor formed either on the GaN transistor chip or on the interposer chip. A method of forming a fully integrated DC-DC power converter is also provided.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: November 14, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Devendra K. Sadana, Edmund J. Sprogis, Naigang Wang
  • Publication number: 20170314136
    Abstract: Present disclosure relates to magnetic materials, chips having magnetic materials, and methods of forming magnetic materials. In certain embodiments, magnetic materials may include a seed layer, and a cobalt-based alloy formed on seed layer. The seed layer may include copper, cobalt, nickel, platinum, palladium, ruthenium, iron, nickel alloy, cobalt-iron-boron alloy, nickel-iron alloy, and any combination of these materials. In certain embodiments, the chip may include one or more on-chip magnetic structures. Each on-chip magnetic structure may include a seed layer, and a cobalt-based alloy formed on seed layer. In certain embodiments, method may include: placing a seed layer in an aqueous electroless plating bath to form a cobalt-based alloy on seed layer. In certain embodiments, the aqueous electroless plating bath may include sodium tetraborate, an alkali metal tartrate, ammonium sulfate, cobalt sulfate, ferric ammonium sulfate and sodium borohydride and has a pH between about 9 to about 13.
    Type: Application
    Filed: April 13, 2017
    Publication date: November 2, 2017
    Inventors: HARIKLIA DELIGIANNI, WILLIAM J. GALLAGHER, YU LUO, LUBOMYR T. ROMANKIW, JOONAH YOON
  • Publication number: 20170316855
    Abstract: Present disclosure relates to magnetic materials, chips having magnetic materials, and methods of forming magnetic materials. In certain embodiments, magnetic materials may include a seed layer, and a cobalt-based alloy formed on seed layer. The seed layer may include copper, cobalt, nickel, platinum, palladium, ruthenium, iron, nickel alloy, cobalt-iron-boron alloy, nickel-iron alloy, and any combination of these materials. In certain embodiments, the chip may include one or more on-chip magnetic structures. Each on-chip magnetic structure may include a seed layer, and a cobalt-based alloy formed on seed layer. In certain embodiments, method may include: placing a seed layer in an aqueous electroless plating bath to form a cobalt-based alloy on seed layer. In certain embodiments, the aqueous electroless plating bath may include sodium tetraborate, an alkali metal tartrate, ammonium sulfate, cobalt sulfate, ferric ammonium sulfate and sodium borohydride and has a pH between about 9 to about 13.
    Type: Application
    Filed: May 2, 2016
    Publication date: November 2, 2017
    Inventors: HARIKLIA DELIGIANNI, WILLIAM J. GALLAGHER, YU LUO, LUBOMYR T. ROMANKIW, JOONAH YOON
  • Patent number: 9806615
    Abstract: Fully integrated, on-chip DC-DC power converters are provided. In one aspect, a DC-DC power converter includes: a SOI wafer having a SOI layer separated from a substrate by a buried insulator, wherein the SOI layer and the buried insulator are selectively removed from at least one first portion of the SOI wafer, and wherein the SOI layer and the buried insulator remain present in at least one second portion of the SOI wafer; at least one GaN transistor formed on the substrate in the first portion of the SOI wafer; at least one CMOS transistor formed on the SOI layer in the second portion of the SOI wafer; a dielectric covering the GaN and CMOS transistors; and at least one magnetic inductor formed on the dielectric. A method of forming a fully integrated DC-DC power converter is also provided.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: October 31, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Devendra K. Sadana, Edmund J. Sprogis, Naigang Wang
  • Patent number: 9793336
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: October 17, 2017
    Assignee: INTERNATIONAL BUSIENSS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20170294504
    Abstract: Disclosed are magnetic structures, including on-chip inductors comprising laminated layers comprising, in order, a barrier and/or adhesion layer, a antiferromagnetic layer, a magnetic growth layer, a soft magnetic layer, an insulating non-magnetic spacer, a soft magnetic layer, a magnetic growth later, an antiferromagnetic layer. Also disclosed are methods of making such structures.
    Type: Application
    Filed: June 21, 2017
    Publication date: October 12, 2017
    Inventors: Hariklia Deligianni, William J. Gallagher, Eugene J, O'Sullivan, Naigang Wang
  • Patent number: 9761368
    Abstract: Disclosed are magnetic structures, including on-chip inductors comprising laminated layers comprising, in order, a barrier and/or adhesion layer, a antiferromagnetic layer, a magnetic growth layer, a soft magnetic layer, an insulating non-magnetic spacer, a soft magnetic layer, a magnetic growth later, an antiferromagnetic layer. Also disclosed are methods of making such structures.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: September 12, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Eugene J. O'Sullivan, Naigang Wang
  • Publication number: 20170224279
    Abstract: A system and method for monitoring a health status of a subject. The system comprises: a medical device implantable in the subject and having a passage or compartment through which blood flows through; a sensor device embedded at or near a surface of said passage within said medical device for generating signals suitable for measuring a Doppler shift effect occurring within said passage; and a control device coupled to said sensor device for measuring a liquid blood flow rate within said passage based on sensor generated signals outputs. The embedded sensor device comprises a first piezo-electric element configured to generate an acoustic excitation signal and a second piezo-electric element configured to receive said acoustic excitation signal. The second piezo-electric element emits a signal responsive to said acoustic excitation signal. Control device in real time compares a generated output signal with the input excitation signal to determine a Doppler frequency shift measurement.
    Type: Application
    Filed: February 8, 2016
    Publication date: August 10, 2017
    Inventors: Amos Cahan, Hariklia Deligianni, Pei-Yun S. Hsueh, Theodore G. van Kessel
  • Publication number: 20170229533
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Application
    Filed: January 20, 2017
    Publication date: August 10, 2017
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20170178788
    Abstract: Disclosed are magnetic structures, including on-chip inductors comprising laminated layers comprising, in order, a barrier and/or adhesion layer, a antiferromagnetic layer, a magnetic growth layer, a soft magnetic layer, an insulating non-magnetic spacer, a soft magnetic layer, a magnetic growth later, an antiferromagnetic layer. Also disclosed are methods of making such structures.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: Hariklia Deligianni, William J. Gallagher, Eugene J. O'Sullivan, Naigang Wang
  • Publication number: 20170164861
    Abstract: A method, apparatus and system for measuring electrical activity generated within a brain is disclosed. A headpiece having a first transistor is placed in contact with a head that contains the brain to bring the first transistor into electrical contact with the head. An electronic signal is generated at the first transistor in response to the electrical activity generated within the brain. The electronic signal is processed at the headpiece in order to measure the electrical activity.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Inventors: Amos Cahan, Hariklia Deligianni, Pei-Yun S. Hsueh
  • Patent number: 9654004
    Abstract: Techniques for integrating DC-DC power converters with other on-chip circuitry are provided. In one aspect, an integrated DC-DC power converter includes: a GaN transistor chip having at least one GaN switch formed thereon; an interposer chip, bonded to the GaN transistor chip, having at least one power driver transistor formed thereon; TSVs present in the interposer chip adjacent to the power driver transistor and which connect the power driver transistor to the GaN switch; and an on-chip magnetic inductor formed either on the GaN transistor chip or on the interposer chip. A method of forming a fully integrated DC-DC power converter is also provided.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: May 16, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Devendra K. Sadana, Edmund J. Sprogis, Naigang Wang
  • Patent number: 9653532
    Abstract: An on-chip magnetic structure structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Grant
    Filed: July 30, 2016
    Date of Patent: May 16, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang