Patents by Inventor Hariklia Deligianni

Hariklia Deligianni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9647151
    Abstract: The invention relates to manufacturing a I-III-VI compound in the form of a thin film for use in photovoltaics, including the steps of: a) electrodepositing a thin-film structure, consisting of I and/or III elements, onto the surface of an electrode that forms a substrate (SUB); and b) incorporating at least one VI element into the structure so as to obtain the I-III-VI compound. According to the invention, the electrodeposition step comprises checking that the uniformity of the thickness of the thin film varies by no more than 3% over the entire surface of the substrate receiving the deposition.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: May 9, 2017
    Assignee: NEXCIS
    Inventors: Pierre-Philippe Grand, Salvador Jaime, Philippe De Gasquet, Hariklia Deligianni, Lubomyr T. Romankiw, Raman Vaidyanathan, Qiang Huang, Shafaat Ahmed
  • Publication number: 20170076852
    Abstract: A technique relates to a method of forming a laminated multilayer magnetic structure. An adhesion layer is deposited on a substrate. A magnetic seed layer is deposited on top of the adhesion layer. Magnetic layers and non-magnetic spacer layers are alternatingly deposited such that an even number of the magnetic layers is deposited while an odd number of the non-magnetic spacer layers is deposited. The odd number is one less than the even number. Every two of the magnetic layers is separated by one of the non-magnetic spacer layers. The first of the magnetic layers is deposited on the magnetic seed layer, and the magnetic layers each have a thickness less than 500 nanometers.
    Type: Application
    Filed: September 15, 2015
    Publication date: March 16, 2017
    Inventors: Hariklia Deligianni, William J. Gallagher, Sathana Kitayaporn, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Joonah Yoon
  • Publication number: 20170076860
    Abstract: A technique relates to a method of forming a laminated multilayer magnetic structure. An adhesion layer is deposited on a substrate. A magnetic seed layer is deposited on top of the adhesion layer. Magnetic layers and non-magnetic spacer layers are alternatingly deposited such that an even number of the magnetic layers is deposited while an odd number of the non-magnetic spacer layers is deposited. The odd number is one less than the even number. Every two of the magnetic layers is separated by one of the non-magnetic spacer layers. The first of the magnetic layers is deposited on the magnetic seed layer, and the magnetic layers each have a thickness less than 500 nanometers.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 16, 2017
    Inventors: Hariklia Deligianni, William J. Gallagher, Sathana Kitayaporn, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Joonah Yoon
  • Patent number: 9590026
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: March 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 9574283
    Abstract: An electroplating/etch apparatus including a fluid jet and a dryer present over the tank containing the electrolyte for the electroplating/etch process. The fluid jet and the dryer remove excess liquids, such as electrolyte, from the component being plated or etched, e.g., working electrode. The working electrode is present on a holder that traverses from a first position within the tank during a plating or etch operation to a second position that is outside the containing the plating electrolyte. The fluid jet rinses the working electrode when the holder is in the second position, and the forced air dryer blows any remaining fluid from the fluid jet and the electrolyte from the working electrode into the tank.
    Type: Grant
    Filed: November 21, 2015
    Date of Patent: February 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Raschid J. Bezama, Hariklia Deligianni
  • Publication number: 20160380135
    Abstract: A chalcogen-resistant material including at least one of a conductive elongated nanostructure layer and a high work function material layer is deposited on a transition metal layer on a substrate. A semiconductor chalcogenide material layer is deposited over the chalcogen-resistant material. The conductive elongated nanostructures, if present, can reduce contact resistance by providing direct electrically conductive paths from the transition metal layer through the chalcogen-resistant material and to the semiconductor chalcogenide material. The high work function material layer, if present, can reduce contact resistance by blocking chalcogenization of the transition metal in the transition metal layer. Reduction of the contact resistance can enhance efficiency of a solar cell including the chalcogenide semiconductor material.
    Type: Application
    Filed: September 12, 2016
    Publication date: December 29, 2016
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Lubomyr T. Romankiw
  • Publication number: 20160336387
    Abstract: An on-chip magnetic structure structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Application
    Filed: July 30, 2016
    Publication date: November 17, 2016
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20160284451
    Abstract: An on-chip magnetic structure structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Application
    Filed: March 24, 2015
    Publication date: September 29, 2016
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20160284788
    Abstract: An on-chip magnetic structure structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Application
    Filed: June 19, 2015
    Publication date: September 29, 2016
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20160284787
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Application
    Filed: June 19, 2015
    Publication date: September 29, 2016
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20160284786
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Application
    Filed: March 24, 2015
    Publication date: September 29, 2016
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 9450136
    Abstract: A structure and method of making a thin-film solar cell is provided. A thin-film solar cell includes a substrate, absorber layer and a buffer layer. The absorber layer is deposited by a single-step bulk electrochemical process, or a multi-layer electrochemical process. The buffer layer is deposited by an electrochemical deposition process such as a multi-layer deposition or an atomic layer deposition. The absorber and buffer layers are non-toxic materials which can include sulfur incorporated during the deposition process or incorporated after deposition by an anneal step.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: September 20, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Lian Guo, Raman Vaidyanathan
  • Patent number: 9447514
    Abstract: A structure and method of making a thin-film solar cell is provided. A thin-film solar cell includes a substrate, absorber layer and a buffer layer. The absorber layer is deposited by a single-step bulk electrochemical process, or a multi-layer electrochemical process. The buffer layer is deposited by an electrochemical deposition process such as a multi-layer deposition or an atomic layer deposition. The absorber and buffer layers are non-toxic materials which can include sulfur incorporated during the deposition process or incorporated after deposition by an anneal step.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: September 20, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Lian Guo, Raman Vaidyanathan
  • Patent number: 9437668
    Abstract: An on-chip magnetic structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: September 6, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 9401443
    Abstract: Photovoltaic devices and methods for preparing a p-type semiconductor generally include electroplating a layer of gallium or a gallium alloy onto a conductive layer by contacting the conductive layer with a plating bath free of complexing agents including a gallium salt, methane sulfonic acid or sodium sulfate and an organic additive comprising at least one nitrogen atom and/or at least one sulfur atom, and a solvent; adjusting a pH of the solution to be less than 2.6 or greater than 12.6. The photovoltaic device includes an impurity in the p-type semiconductor layer selected from the group consisting of arsenic, antimony, bismuth, and mixtures thereof. Various photovoltaic precursor layers for forming CIS, CGS and CIGS p-type semiconductor structures can be formed by electroplating the gallium or gallium alloys in this manner. Also disclosed are processes for forming a thermal interface of gallium or a gallium alloy.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: July 26, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Qiang Huang, Kathleen B. Reuter, Lubomyr T. Romankiw, Raman Vaidyanathan
  • Patent number: 9362440
    Abstract: Techniques for electrodeposition of thin film solar panels are provided. In one aspect, an electrodeposition apparatus is provided. The electrodeposition apparatus includes at least one electroplating cell; and a conveyor for moving panels over the electroplating cell, wherein the conveyor comprises at least one metal belted track over the electroplating cell surrounding a plurality of metal rollers. The electroplating cell can include an anode at a bottom of the electroplating cell; and a plurality of paddles at a top of the electroplating cell. A baffle may be located in between the anode and the paddles. An electroplating process is also provided.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: June 7, 2016
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Lubomyr T. Romankiw
  • Publication number: 20160155889
    Abstract: In one aspect, a method for fabricating a thin film solar cell includes the following steps. A first absorber material is deposited as a layer A on a substrate while applying pressure to the substrate/layer A. A second absorber material is deposited as a layer B on layer A while applying pressure to the substrate/layer B. A third absorber material is deposited as a layer C on layer B while applying pressure to the substrate/layer C. A fourth absorber material is deposited as a layer D on layer C while applying pressure to the substrate/layer D. The first absorber material comprises copper, the second absorber material comprises indium, the third absorber material comprises gallium, and the fourth absorber material comprises one or more of sulfur and selenium, and wherein by way of performing the steps of claim 1 a chalcogenide absorber layer is formed on the substrate.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 2, 2016
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Qiang Huang, Lubomyr T. Romankiw, Raman Vaidyanathan
  • Patent number: 9347147
    Abstract: An electroplating apparatus including a reference electrode to control the potential during an electro-deposition process. The electroplating apparatus may include a bath containing a plating electrolyte and an anode present in a first portion of the bath containing the plating electrolyte. A cathode is present in a second portion of the bath containing the plating electrolyte. A reference electrode is present at a perimeter of the cathode. The electroplating apparatus also includes a control system to bias the cathode and the anode to provide a potential. A measuring system is provided in electrical communication with the reference electrode to measure the potential of the cathode. Methods of using the above described electroplating apparatus are also provided. Structures and method for electroless deposition are also provided.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: May 24, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Harry Cox, Hariklia Deligianni, George J. Scott
  • Patent number: 9293632
    Abstract: In one aspect, a method for fabricating a thin film solar cell includes the following steps. A first absorber material is deposited as a layer A on a substrate while applying pressure to the substrate/layer A. A second absorber material is deposited as a layer B on layer A while applying pressure to the substrate/layer B. A third absorber material is deposited as a layer C on layer B while applying pressure to the substrate/layer C. A fourth absorber material is deposited as a layer D on layer C while applying pressure to the substrate/layer D. The first absorber material comprises copper, the second absorber material comprises indium, the third absorber material comprises gallium, and the fourth absorber material comprises one or more of sulfur and selenium, and wherein by way of performing the steps of claim 1 a chalcogenide absorber layer is formed on the substrate.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: March 22, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Qiang Huang, Lubomyr T. Romankiw, Raman Vaidyanathan
  • Publication number: 20160076167
    Abstract: An electroplating/etch apparatus including a fluid jet and a dryer present over the tank containing the electrolyte for the electroplating/etch process. The fluid jet and the dryer remove excess liquids, such as electrolyte, from the component being plated or etched, e.g., working electrode. The working electrode is present on a holder that traverses from a first position within the tank during a plating or etch operation to a second position that is outside the containing the plating electrolyte. The fluid jet rinses the working electrode when the holder is in the second position, and the forced air dryer blows any remaining fluid from the fluid jet and the electrolyte from the working electrode into the tank.
    Type: Application
    Filed: November 21, 2015
    Publication date: March 17, 2016
    Applicants: International Business Machines Corporation, International Business Machines Corporation
    Inventors: Charles L. Arvin, Raschid J. Bezama, Hariklia Deligianni