Patents by Inventor Hemanth Jagannathan

Hemanth Jagannathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10741652
    Abstract: A method is presented for forming a wrap-around-contact. The method includes forming a bottom source/drain region adjacent a plurality of fins, disposing encapsulation layers over the plurality of fins, recessing at least one of the encapsulation layers to expose top portions of the plurality of fins, and for forming top spacers adjacent the top portions of the plurality of fins. The method further includes disposing a sacrificial liner adjacent the encapsulation layers, recessing the top spacers, forming top source/drain regions over the top portions of the plurality of fins, removing the sacrificial liner to create trenches adjacent the top source/drain regions, and depositing a metal liner within the trenches and over the top source/drain regions such that the wrap-around-contact is defined to cover an upper area of the top source/drain regions.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: August 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Choonghyun Lee, Christopher J. Waskiewicz, Alexander Reznicek, Hemanth Jagannathan
  • Patent number: 10734475
    Abstract: A method is presented for forming a stacked metal-insular-metal (MIM) capacitor with self-aligned contact. The method includes forming a first electrode plate over a first interlayer dielectric (ILD), forming a first spacer adjacent the first electrode plate, forming a first insulating layer over the first electrode plate, forming a second electrode plate over the first insulating layer, and forming a second spacer adjacent the second electrode plate and the first insulating layer. The method further includes forming a second insulating layer over the second electrode plate, forming a third electrode plate over the second insulating layer, forming a third spacer adjacent the third electrode plate and the second insulating layer, and forming a second ILD over the third electrode plate. The method also includes forming a first via through the second ILD and directly contacting the second spacer such to prevent the first via from contacting the second electrode plate.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: August 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Robert Allen Groves, Hemanth Jagannathan, Lawrence A. Clevenger, Griselda Bonilla
  • Publication number: 20200243670
    Abstract: According to an embodiment of the present invention, a semiconductor structure includes a semiconductor substrate and a plurality of fins located on the semiconductor substrate. The plurality of fins each independently includes a bottom fin portion, a top fin portion layer, and an isolated oxide layer located in between the bottom fin portion and the top fin portion layer in the y-direction parallel to the height of the plurality of fins. The isolated oxide layer includes a mixed oxide region located in between oxidized regions in an x-direction perpendicular to the height of the plurality of fins.
    Type: Application
    Filed: April 9, 2020
    Publication date: July 30, 2020
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Paul C. Jamison, Choonghyun Lee
  • Patent number: 10714399
    Abstract: A method of forming a semiconductor structure includes forming a plurality of fins over a top surface of a substrate, and forming one or more vertical transport field-effect transistors from the plurality of fins, the plurality of fins providing channels for the one or more vertical transport field-effect transistors. The method also includes forming a gate stack for the one or more vertical transport field-effect transistors surrounding at least a portion of the plurality of fins, the gate stack including a gate dielectric formed over the plurality of fins, a work function metal layer formed over the gate dielectric, and a gate conductor formed over the work function metal layer. The gate stack comprises a box profile in an area between at least two adjacent ones of the plurality of fins.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: July 14, 2020
    Assignee: International Business Machines Corporation
    Inventors: Shogo Mochizuki, ChoongHyun Lee, Hemanth Jagannathan
  • Publication number: 20200219777
    Abstract: A method of forming a semiconductor structure includes forming a plurality of fins over a top surface of a substrate, and forming one or more vertical transport field-effect transistors from the plurality of fins, the plurality of fins providing channels for the one or more vertical transport field-effect transistors. The method also includes forming a gate stack for the one or more vertical transport field-effect transistors surrounding at least a portion of the plurality of fins, the gate stack including a gate dielectric formed over the plurality of fins, a work function metal layer formed over the gate dielectric, and a gate conductor formed over the work function metal layer. The gate stack comprises a box profile in an area between at least two adjacent ones of the plurality of fins.
    Type: Application
    Filed: March 20, 2020
    Publication date: July 9, 2020
    Inventors: Shogo Mochizuki, ChoongHyun Lee, Hemanth Jagannathan
  • Publication number: 20200212220
    Abstract: A semiconductor structure includes a substrate, a bottom source/drain region disposed on a top surface of the substrate, and a plurality of fins disposed over a top surface of the bottom source/drain region. The fins provide vertical transport channels for one or more vertical transport field-effect transistors. The semiconductor structure also includes at least one self-aligned shared contact disposed between an adjacent pair of the plurality of fins. The adjacent pair of the plurality of fins includes a first fin providing a first vertical transport channel for a first vertical transport field-effect transistor and a second fin providing a second vertical transport channel for a second vertical transport field-effect transistor.
    Type: Application
    Filed: March 9, 2020
    Publication date: July 2, 2020
    Inventors: Ruqiang Bao, Brent A. Anderson, ChoongHyun Lee, Hemanth Jagannathan
  • Publication number: 20200211908
    Abstract: A method of forming a semiconductor structure includes forming a plurality of fins over a top surface of a bottom source/drain region disposed over a top surface of a substrate, the fins providing vertical transport channels for a plurality of vertical transport field-effect transistors. The method also includes forming a first gate conductor surrounding a first one of an adjacent pair of the plurality of fins providing a first vertical transport channel for a first vertical transport field-effect transistor, forming a second gate conductor surrounding a second one of the adjacent pair of the plurality of fins providing a second vertical transport channel for a second vertical transport field-effect transistor, and forming at least one shared gate contact to the first gate conductor and the second gate conductor, the at least one shared gate contact being formed at first ends of the adjacent pair of the plurality of fins.
    Type: Application
    Filed: March 9, 2020
    Publication date: July 2, 2020
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Brent A. Anderson, ChoongHyun Lee
  • Patent number: 10685876
    Abstract: Embodiments of the invention are directed to an interconnect stack including a first dielectric layer, a first trench formed in the first dielectric layer, and a first liner deposited in the first trench, wherein the first liner defines a second trench. A first conductive material is in the second trench and deposited over the first dielectric layer and the first conductive material. A third trench extends through the second dielectric layer and is over the first conductive material. A bottom surface of the third trench includes at least a portion of the top surface of the first conductive material. A second liner is in the third trench, on sidewalls of the third trench, and also on the portion of the top surface of the first conductive material. The second liner functions as a cap region configured to counter electro-migration or surface migration of the first conductive material.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: June 16, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Su Chen Fan, Hemanth Jagannathan, Raghuveer R. Patlolla, Cornelius Brown Peethala
  • Patent number: 10685888
    Abstract: A semiconductor structure and a method for fabricating the same. The semiconductor structure includes at least one semiconductor fin disposed on a substrate. A disposable gate contacts the at least one semiconductor fin. A spacer is disposed on the at least one semiconductor fin and in contact with the disposable gate. Epitaxially grown source and drain regions are disposed at least partially within the at least one semiconductor fin. A first one of silicide and germanide is disposed on and in contact with the source region. A second one of one of silicide and germanide is disposed on and in contact with the drain region. The method includes epitaxially growing source/drain regions within a semiconductor fin. A contact metal layer contacts the source/drain regions. One of a silicide and a germanide is formed on the source/drain regions from the contact metal layer prior to removing the disposable gate.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: June 16, 2020
    Assignee: International Business Machines Corporation
    Inventors: Praneet Adusumilli, Hemanth Jagannathan, Christian Lavoie, Ahmet S. Ozcan
  • Publication number: 20200185381
    Abstract: A method of fabricating a plurality of field effect transistors with different threshold voltages, including forming a cover layer on a channel region in a first subset, forming a first sacrificial layer on two or more channel regions in a second subset, forming a second sacrificial layer on one of the two or more channel regions in the second subset, removing the cover layer from the channel region in the first subset, forming a first dummy dielectric layer on the channel region in the first subset, and forming a second dummy dielectric layer on the first dummy dielectric layer and the first sacrificial layer on the channel region in the second subset.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 11, 2020
    Inventors: Takashi Ando, Ruqiang Bao, Hemanth Jagannathan, ChoongHyun Lee
  • Publication number: 20200185380
    Abstract: A method of fabricating a plurality of field effect transistors with different threshold voltages, including forming a cover layer on a channel region in a first subset, forming a first sacrificial layer on two or more channel regions in a second subset, forming a second sacrificial layer on one of the two or more channel regions in the second subset, removing the cover layer from the channel region in the first subset, forming a first dummy dielectric layer on the channel region in the first subset, and forming a second dummy dielectric layer on the first dummy dielectric layer and the first sacrificial layer on the channel region in the second subset.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 11, 2020
    Inventors: Takashi Ando, Ruqiang Bao, Hemanth Jagannathan, ChoongHyun Lee
  • Patent number: 10680083
    Abstract: According to an embodiment of the present invention, a semiconductor structure includes a semiconductor substrate and a plurality of fins located on the semiconductor substrate. The plurality of fins each independently includes a bottom fin portion, a top fin portion layer, and an isolated oxide layer located in between the bottom fin portion and the top fin portion layer in the y-direction parallel to the height of the plurality of fins. The isolated oxide layer includes a mixed oxide region located in between oxidized regions in an x-direction perpendicular to the height of the plurality of fins.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: June 9, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Paul C. Jamison, Choonghyun Lee
  • Patent number: 10672905
    Abstract: A semiconductor structure includes a substrate, a bottom source/drain region disposed on a top surface of the substrate, and a plurality of fins disposed over a top surface of the bottom source/drain region. The fins provide vertical transport channels for one or more vertical transport field-effect transistors. The semiconductor structure also includes at least one self-aligned shared contact disposed between an adjacent pair of the plurality of fins. The adjacent pair of the plurality of fins includes a first fin providing a first vertical transport channel for a first vertical transport field-effect transistor and a second fin providing a second vertical transport channel for a second vertical transport field-effect transistor.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: June 2, 2020
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Brent A. Anderson, ChoongHyun Lee, Hemanth Jagannathan
  • Patent number: 10672670
    Abstract: A method of forming a semiconductor structure includes forming a plurality of fins over a top surface of a bottom source/drain region disposed over a top surface of a substrate, the fins providing vertical transport channels for a plurality of vertical transport field-effect transistors. The method also includes forming a first gate conductor surrounding a first one of an adjacent pair of the plurality of fins providing a first vertical transport channel for a first vertical transport field-effect transistor, forming a second gate conductor surrounding a second one of the adjacent pair of the plurality of fins providing a second vertical transport channel for a second vertical transport field-effect transistor, and forming at least one shared gate contact to the first gate conductor and the second gate conductor, the at least one shared gate contact being formed at first ends of the adjacent pair of the plurality of fins.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: June 2, 2020
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Brent A. Anderson, ChoongHyun Lee
  • Publication number: 20200161451
    Abstract: A semiconductor device and a method for fabricating the same. The semiconductor device includes at least a n-type vertical FET and a p-type vertical FET. The n-type vertical FET includes at least a first bottom source/drain layer. The p-type vertical FET includes at least a second bottom source/drain layer. A silicon dioxide layer separates the first bottom source/drain layer and the second bottom source/drain layer. The method includes forming a first bottom source/drain layer in a p-type vertical FET device area. A germanium dioxide layer is formed in contact with the first semiconductor layer a second semiconductor fin formed within a n-type vertical FET device area. A silicon dioxide layer is formed in contact with the first bottom source/drain layer from the germanium dioxide layer. A second bottom source/drain layer is formed in contact with the second semiconductor fin and the silicon dioxide layer.
    Type: Application
    Filed: November 15, 2018
    Publication date: May 21, 2020
    Inventors: Choonghyun LEE, Ruqiang BAO, SHOGO MOCHIZUKI, Brent A. ANDERSON, Hemanth JAGANNATHAN
  • Patent number: 10658299
    Abstract: A method of forming a semiconductor structure comprises forming a plurality of fins disposed over a top surface of a substrate and forming one or more vertical transport field-effect transistors (VTFETs) from the plurality of fins using a replacement metal gate (RMG) process. A gate surrounding at least one fin of a given one of the VTFETs comprises a gate self-aligned contact (SAC) capping layer disposed over a gate contact metal layer, the gate contact metal layer being disposed adjacent an end of the at least one fin.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: May 19, 2020
    Assignee: International Business Machines Corporation
    Inventors: Choonghyun Lee, Chun Wing Yeung, Ruqiang Bao, Hemanth Jagannathan
  • Publication number: 20200152631
    Abstract: A semiconductor device includes a first diffusion region having a first conductivity type, a first SiGe fin formed on the first diffusion region, a second diffusion region having a second conductivity type, and a second SiGe fin formed on the second diffusion region and including a central portion including a first amount of Ge, and a surface portion including a second amount of Ge which is greater than the first amount. A total width of the central portion and the surface portion is substantially equal to a width of the second diffusion region.
    Type: Application
    Filed: December 31, 2019
    Publication date: May 14, 2020
    Inventors: Robin Hsin Kuo Chao, Hemanth Jagannathan, Choonghyun Lee, Chun Wing Yeung, II, Jingyun Zhang
  • Publication number: 20200152766
    Abstract: A vertical transport field-effect transistor includes a top source/drain region separated from an underlying gate stack by a multi-layer top spacer that includes an oxygen barrier layer beneath a top dielectric layer. Techniques for fabricating the transistor include depositing the oxygen barrier layer over the gate stack prior to depositing the top dielectric layer. The oxygen barrier layer blocks oxygen diffusion during deposition of the top dielectric layer, thereby avoiding damage to underlying interfacial and gate dielectric layers.
    Type: Application
    Filed: January 19, 2020
    Publication date: May 14, 2020
    Inventors: Hemanth Jagannathan, Choonghyun Lee, Alexander Reznicek, Christopher Waskiewicz
  • Publication number: 20200152791
    Abstract: A method of forming a vertical transport field effect transistor is provided. The method includes forming a vertical fin on a substrate, and a top source/drain on the vertical fin. The method further includes thinning the vertical fin to form a thinned portion, a tapered upper portion, and a tapered lower portion from the vertical fin. The method further includes depositing a gate dielectric layer on the thinned portion, tapered upper portion, and tapered lower portion of the vertical fin, wherein the gate dielectric layer has an angled portion on each of the tapered upper portion and tapered lower portion. The method further includes depositing a work function metal layer on the gate dielectric layer.
    Type: Application
    Filed: January 15, 2020
    Publication date: May 14, 2020
    Inventors: Shogo Mochizuki, Brent A. Anderson, Hemanth Jagannathan, Junli Wang
  • Patent number: 10651266
    Abstract: Capacitors include a stack that has a first metallic layer formed over a substrate with at least one high domain and at least one low domain, an insulator formed over the first metallic layer, and a second metallic layer formed over the insulator. A bottom contact is formed in the substrate having a top surface that is even with a top surface of the substrate in the at least one high domain. A cap layer is formed directly on the substrate in the high domains, under the stack.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: May 12, 2020
    Assignee: Tessera, Inc.
    Inventors: Kisup Chung, Isabel C. Estrada-Raygoza, Hemanth Jagannathan, Chi-Chun Liu, Yann A. M. Mignot, Hao Tang