Patents by Inventor Heribert Weber

Heribert Weber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8558327
    Abstract: A micromechanical component having a conductive substrate, a first conductive layer provided above the substrate and that forms, above a cavity provided in the substrate, an elastically deflectable diaphragm region of monocrystalline silicon and an adjacent peripheral region, a circuit trace level provided above the first conductive layer in a manner that is electrically insulated from the first conductive layer, the circuit trace level having above the diaphragm region a first electrode region and having above the peripheral region a first connection region electrically connected to the same, and a second conductive layer that is provided above the circuit trace level, the second conductive layer having above the diaphragm region a second electrode region that is electrically insulated from the first electrode region, and having above the peripheral region a second connection region electrically insulated from the second electrode region and electrically connected to the first connection region.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: October 15, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Kathrin Knese, Heribert Weber, Simon Armbruster
  • Patent number: 8530260
    Abstract: A method for attaching a first carrier device to a second carrier device includes forming at least one first bond layer and/or solder layer on a first exterior of the first carrier device, a partial surface being framed by the at least one first bond layer and/or solder layer, and placing the first carrier device on the second carrier device and fixedly bonding or soldering the first carrier device to the second carrier device. The at least one first bond layer and/or solder layer includes a first cover area which is larger than a first contact area.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: September 10, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Julian Gonska, Axel Grosse, Heribert Weber, Ralf Hausner
  • Publication number: 20130209672
    Abstract: A method for manufacturing a component having a through-connection. The method includes providing a semiconductor substrate, forming a recess in the semiconductor substrate, and introducing into the recess a pourable starting material which has a metal. The method furthermore includes carrying out a heating process, an electrically conductive structure forming the through-connection being developed from the pourable starting material.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 15, 2013
    Inventors: Jochen REINMUTH, Frank SCHNELL, Heribert WEBER, Erhard HIRTH, Yvonne BERGMANN
  • Patent number: 8485041
    Abstract: A sensor system, e.g., a pressure sensor system, includes a substrate having at least one trench on a first side. The trench is provided for forming a first diaphragm region on a second side opposite from the first side. In addition, a second diaphragm region and a cavern are integrated into the material of the first diaphragm region.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: July 16, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Marcus Ahles, Hubert Benzel, Heribert Weber
  • Publication number: 20130161820
    Abstract: A method for bonding two silicon substrates and a corresponding system of two silicon substrates. The method includes: providing first and second silicon substrates; depositing a first bonding layer of pure aluminum or of aluminum-copper having a copper component between 0.1 and 5% on a first bonding surface of the first silicon substrate; depositing a second bonding layer of germanium above the first bonding surface or above a second bonding surface of the second silicon substrate; subsequently joining the first and second silicon substrates, so that the first and the second bonding surfaces lie opposite each other; and implementing a thermal treatment step to form an eutectic bonding layer of aluminum-germanium or containing aluminum-germanium as the main component, between the first silicon substrate and the second silicon substrate, spikes which contain aluminum as a minimum and extend into the first silicon substrate, forming at least on the first bonding surface.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 27, 2013
    Inventors: Julian GONSKA, Heribert Weber, Jens Frey, Timo Schary, Thomas Mayer
  • Publication number: 20130147020
    Abstract: An advantageous method and system for realizing electrically very reliable and mechanically extremely stable vias for components whose functionality is realized in a layer construction on a conductive substrate. The via (Vertical Interconnect Access), which is led to the back side of the component and which is used for the electrical contacting of functional elements realized in the layer construction, includes a connection area in the substrate that extends over the entire thickness of the substrate and is electrically insulated from the adjoining substrate by a trench-like insulating frame likewise extending over the entire substrate thickness. According to the present system, the trench-like insulating frame is filled up with an electrically insulating polymer.
    Type: Application
    Filed: April 13, 2011
    Publication date: June 13, 2013
    Inventors: Julian Gonska, Jens Frey, Heribert Weber, Eckhard Graf, Roman Schlosser
  • Patent number: 8419957
    Abstract: A method for producing a micromechanical component is proposed, a trench structure being substantially completely filled up by a first filler layer, and a first mask layer being applied on the first filler layer, on which in turn a second filler layer and a second mask layer are applied. A micromechanical component is also proposed, the first filler layer filling up the trench structure of the micromechanical component and at the same time forming a movable sensor structure.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: April 16, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Roland Scheuerer, Heribert Weber, Eckhard Graf
  • Publication number: 20130043548
    Abstract: A method for manufacturing a micromechanical structure includes: forming a first insulation layer above a substrate; forming a first micromechanical functional layer on the first insulation layer; forming multiple first trenches in the first micromechanical functional layer, which trenches extend as far as the first insulation layer; forming a second insulation layer on the first micromechanical functional layer, which second insulation layer fills up the first trenches; forming etch accesses in the second insulation layer, which etch accesses locally expose the first micromechanical functional layer; and etching the first micromechanical functional layer through the etch accesses, the filled first trenches and the first insulation layer acting as an etch stop.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 21, 2013
    Inventors: Jochen Reinmuth, Heribert Weber
  • Patent number: 8298962
    Abstract: A device made of single-crystal silicon having a first side, a second side which is situated opposite to the first side, and a third side which extends from the first side to the second side, the first side and the second side each extending in a 100 plane of the single-crystal silicon, the third side extending in a first area in a 111 plane of the single-crystal silicon. The third side extends in a second area in a 110 plane of the single-crystal silicon. Furthermore, a production method for producing a device made of single-crystal silicon is described.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: October 30, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Arnd Kaelberer, Helmut Baumann, Roland Scheuerer, Heribert Weber
  • Publication number: 20120248552
    Abstract: An electrically insulating sheathing for a piezoresistor and a semiconductor material are provided such that the piezoresistor is able to be used in the high temperature range, e.g., for measurements at higher ambient temperatures than 200° C. A doped resistance area is initially laterally delineated by at least one circumferential essentially vertical trench and is undercut by etching over the entire area. An electrically insulating layer is then created on the wall of the trench and the undercut area, so that the resistance area is electrically insulated from the adjacent semiconductor material by the electrically insulating layer.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 4, 2012
    Inventors: Hubert BENZEL, Heribert Weber
  • Patent number: 8207585
    Abstract: A method is provided for producing a micromechanical component and a micromechanical component is provided, particularly a microphone, a micro-loudspeaker or a pressure sensor (an absolute pressure sensor or a relative pressure sensor) having a substrate and having a diaphragm pattern, for the production of the diaphragm pattern, process steps being provided that are compatible only with a circuit that is monolithically integrated into or on the substrate, a sacrificial pattern applied onto the substrate being removed for the production of the diaphragm pattern.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: June 26, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Roman Schlosser, Heribert Weber, Christoph Schelling
  • Patent number: 8181522
    Abstract: An acceleration sensor having a mass which is movably supported outside its center of gravity, first electrodes on the mass and second electrodes located at a distance therefrom forming a capacitive sensor in order to determine a change in position of the mass as a function of time. At least one spring element which generates a restoring force when the mass is deflected from its neutral position is provided on the side of the mass facing the capacitive sensor. The mass may be obtained by being exposed from a material layer, and the mass is surrounded, at least at its side faces, by this material.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: May 22, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Roland Scheuerer, Heribert Weber
  • Patent number: 8138006
    Abstract: A method for manufacturing a micromechanical component is proposed. In this context, at least one trench structure having a depth less than the substrate thickness is to be produced in a substrate. In addition, an insulating layer and a filler layer are produced or applied on a first side of the substrate. The filler layer comprises a filler material that substantially fills up the trench structure. A planar first side of the substrate is produced by way of a subsequent planarization within a plane of the filler layer or of the insulating layer or of the substrate. A further planarization of the second side of the substrate is then accomplished. A micromechanical component that is manufactured in accordance with the method is also described.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: March 20, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Roland Scheuerer, Heribert Weber, Eckhard Graf
  • Publication number: 20120061860
    Abstract: A method for constructing an electrical circuit that includes at least one semiconductor chip encapsulated with a potting compound is disclosed. The method includes applying a galvanic layer arrangement for forming an electrochemical element on an element of the electrical circuit including the at least one semiconductor chip.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 15, 2012
    Applicant: Robert Bosch GmbH
    Inventors: Tjalf Pirk, Juergen Butz, Axel Franke, Frieder Haag, Heribert Weber, Arnim Hoechst, Sonja Knies
  • Publication number: 20120049301
    Abstract: A method for manufacturing a micromechanical component is proposed. In this context, at least one trench structure having a depth less than the substrate thickness is to be produced in a substrate. In addition, an insulating layer and a filler layer are produced or applied on a first side of the substrate. The filler layer comprises a filler material that substantially fills up the trench structure. A planar first side of the substrate is produced by way of a subsequent planarization within a plane of the filler layer or of the insulating layer or of the substrate. A further planarization of the second side of the substrate is then accomplished. A micromechanical component that is manufactured in accordance with the method is also described.
    Type: Application
    Filed: November 8, 2011
    Publication date: March 1, 2012
    Inventors: Roland Scheuerer, Heribert Weber, Eckhard Graf
  • Patent number: 8123963
    Abstract: A method for producing a semiconductor component includes forming an n-doped layer in a p-doped layer of the semiconductor component, wherein the n-doped layer comprises at least one of: a sieve-like layer or a network-like layer. The method also includes porously etching the p-doped layer between the material of the n-doped layer to form a top electrode, and forming a cavity below the n-doped layer.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: February 28, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Heribert Weber, Hans Artmann, Frank Schaefer
  • Publication number: 20120045628
    Abstract: A method is described for producing a micromechanical component. The method includes providing a first substrate, providing a second substrate, developing a projecting patterned element on the second substrate, and connecting the first and the second substrate via the projecting patterned element. The method provides that the connecting of the first and the second substrate includes eutectic bonding. Also described is a micromechanical component, in which a first and a second substrate are connected to each other.
    Type: Application
    Filed: April 7, 2010
    Publication date: February 23, 2012
    Inventors: Julian Gonska, Heribert Weber
  • Publication number: 20120038030
    Abstract: A method is described for filling cavities in wafers, the cavities being open to a predetermined surface of the wafer, including the following steps: applying a lacquer-like filling material to the predetermined surface of the wafer; heating the wafer at a first temperature; driving out gas bubbles enclosed in the filling material by heating the wafer under vacuum at a second temperature which is equal to or higher than the first temperature; and curing the filling material by heating the wafer at a third temperature which is higher than the second temperature. Furthermore, also described is a blind hole filled using such a method and general 3D cavities as well as a wafer having insulation trenches of a silicon via filled using such a method.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 16, 2012
    Inventors: Jens Frey, Heribert Weber, Eckhard Graf, Roman Schlosser
  • Publication number: 20120038065
    Abstract: A method for producing an electrical circuit having at least one semiconductor chip is disclosed. The method includes forming a wiring layer at a contact side of the at least one semiconductor chip, which is encapsulated with a potting compound apart from the contact side. The wiring layer has at least one conductor loop for the purpose of forming an electrical coil.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 16, 2012
    Applicant: Robert Bosch GmbH
    Inventors: Juergen Butz, Axel Franke, Frieder Haag, Heribert Weber, Arnim Hoechst, Sonja Knies
  • Publication number: 20120032283
    Abstract: A sensor module includes a substrate system which has multiple substrates situated one on top of the other and connected in each case via a wafer bond connection. The substrate system includes at least one first sensor substrate and at least one second sensor substrate, the first sensor substrate having a first sensor structure and the second sensor substrate having a second sensor structure. The first and second sensor structures are designed for detecting different characteristics. At least the first sensor structure includes a micromechanical functional structure. Moreover, a method for manufacturing such a sensor module is disclosed.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 9, 2012
    Inventors: Jens FREY, Heribert WEBER, Eckhard GRAF