Patents by Inventor Hideki Hirayama

Hideki Hirayama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110279692
    Abstract: Performing data processing more effectively for camera shake correction is desirable. Movement of an image-capturing device is compensated on the basis of displacement velocity of the image-capturing device detected by a displacement velocity detector and position regarding a focus adjustment member of the image-capturing device detected by a position detector. An input data format converter converts the displacement velocity detected at the displacement velocity detector from fixed-point format to floating-point format and converts the detected position of the focus member to floating-point data. Furthermore, a gyro filter uses data processing in floating-point format to calculate displacement data for a required amount the image-capturing device is to be displaced and a Hall filter uses data processing in floating-point format to generate drive data for the focus adjustment member. Then, the drive data in floating-point format from the Hall filter is converted to drive data in fixed-point format.
    Type: Application
    Filed: May 12, 2011
    Publication date: November 17, 2011
    Applicant: ON SEMICONDUCTOR TRADING, LTD.
    Inventor: Hideki HIRAYAMA
  • Publication number: 20110201142
    Abstract: To provide a light-emitting device using a nitride semiconductor which can attain high-power light emission by highly efficient light emission, a method of manufacturing the light-emitting device involves forming a first AlGaN layer of a first conductivity type on a side of a first main surface of a nitride semiconductor substrate, forming a light-emitting layer including an InAlGaN quaternary alloy on the first AlGaN layer, forming a second AlGaN layer of a second conductivity type on the light-emitting layer, and removing the nitride semiconductor substrate after forming the second AlGaN layer.
    Type: Application
    Filed: April 25, 2011
    Publication date: August 18, 2011
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., RIKEN
    Inventors: Hideki HIRAYAMA, Katsushi AKITA, Takao NAKAMURA
  • Patent number: 7943943
    Abstract: To provide a light-emitting device using a nitride semiconductor which can attain high-power light emission by highly efficient light emission and a manufacturing method thereof, the light-emitting device includes a GaN substrate and a light-emitting layer including an InAlGaN quaternary alloy on a side of a first main surface of GaN substrate.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: May 17, 2011
    Assignees: Sumitomo Electric Industries, Ltd., RIKEN
    Inventors: Hideki Hirayama, Katsushi Akita, Takao Nakamura
  • Publication number: 20110042713
    Abstract: The nitride semi-conductive light emitting layer in this invention comprises a single crystal substrate 1 for epitaxial growth, a first buffer layer 2, an n-type nitride semi-conductive layer 3, a second buffer layer 4, a third buffer layer 5, a light emitting layer 6, and a p-type nitride semi-conductive layer 7. The first buffer layer 2 is laminated to a top side of the single crystal substrate 1. The n-type nitride semi-conductive layer 3 is laminated to a top side of the first buffer layer 2. The third buffer layer 5 is laminated to a top side of the n-type nitride semi-conductive layer 3 with the second buffer layer 4 being interposed therebetween. The light emitting layer 6 is laminated to a top side of the third buffer layer 5. The p-type nitride semi-conductive layer 7 is laminated to a top side of the light emitting layer 6.
    Type: Application
    Filed: March 23, 2009
    Publication date: February 24, 2011
    Applicants: PANASONIC ELECTRIC WORKS CO., LTD., RIKEN
    Inventors: Takayoshi Takano, Kenji Tsubaki, Hideki Hirayama, Sachie Fujikawa
  • Patent number: 7888154
    Abstract: To provide an elemental technique for improving the emission intensity of deep ultraviolet light from a light emitting layer made of an AlGaInN-based material, in particular, an AlGaN-based material. First, an AlN layer is grown on a sapphire surface. The AlN layer is grown under a NH3-rich condition. The TMAl pulsed supply sequence includes growing an AlGaN layer for 10 seconds, interrupting the growth for 5 seconds to remove NH3, and then introducing TMAl at a flow rate of 1 sccm for 5 seconds. After that, the growth is interrupted again for 5 seconds. Defining this sequence as one growth cycle, five growth cycles are carried out. By such growth, an AlGaN layer having a polarity of richness in Al can be obtained. The above sequence is described only for illustrative purposes, and various variations are possible. In general, the Al polarity can be achieved by a process of repeating both growth interruption and supply of an Al source.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: February 15, 2011
    Assignee: Riken
    Inventors: Hideki Hirayama, Tomoaki Ohashi, Norihiko Kamata
  • Patent number: 7859007
    Abstract: To provide a light-emitting device using a nitride semiconductor which can attain high-power light emission by highly efficient light emission and a manufacturing method thereof, the light-emitting device includes a GaN substrate and a light-emitting layer including an InAlGaN quaternary alloy on a side of a first main surface of GaN substrate.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: December 28, 2010
    Assignees: Sumitomo Electric Industries, Ltd., RIKEN
    Inventors: Hideki Hirayama, Katsushi Akita, Takao Nakamura
  • Patent number: 7856179
    Abstract: An image stabilization control circuit of an image-capturing device prevents overflow of data in an integration process performed in a digital signal process on a signal outputted by a gyro-sensor. A gyro-filter receives, as an input, fixed-point format angular velocity data (D?) obtained by subjecting an output signal from the gyro-sensor to an analog-to-digital conversion. In the gyro-filter, an input format conversion circuit converts from fixed-point format to floating-point format. A camera shake vibration component is obtained from the floating-point format D?, is integrated, and data (D?) corresponding to an oscillation angle is generated. After a centering process is performed, D? is converted from floating-point format to fixed-point format by an output format conversion circuit, and outputted from the gyro-filter. A drive signal for driving an image stabilization mechanism is generated on the basis of the data outputted by the gyro-filter.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: December 21, 2010
    Assignees: Sanyo Electric Co., Ltd., Sanyo Semiconductor Co., Ltd.
    Inventor: Hideki Hirayama
  • Publication number: 20100270532
    Abstract: A nitride semi-conductor light emitting device has a p-type nitride semi-conductor layer 7, an n-type nitride semi-conductor layer 3, and a light emission layer 6 which is interposed between the p-type nitride semi-conductor layer 7 and the n-type nitride semi-conductor layer 3. The light emission layer 6 has a quantum well structure with a barrier layer 6b and a well layer 6a. The barrier layer 6b is formed of AlaGabIn(1-a-b)N (0<a<1, 0<b<1, 1?a?b>0), and contains a first impurity at a concentration of A greater than zero. The well layer 6a is formed of AlcGadIn(1-c-d)N (0<c<1, c<a, 0<d<1, 1?c?d>0), and contains a second impurity at a concentration of B equal to or greater than zero. In the nitride semi-conductor light emitting device of the present invention, the concentration of A is larger than that of B, in order that the barrier layer 6b has a concentration of oxygen smaller than that in the well layer 6a.
    Type: Application
    Filed: November 18, 2009
    Publication date: October 28, 2010
    Inventors: Takayoshi Takano, Kenji Tsubaki, Hideki Hirayama, Sachie Fujikawa
  • Publication number: 20100270583
    Abstract: In a process of fabricating a nitride nitride semi-conductor layer of AlaGabIn(1-a-b)N (0<a<1, 0<b<1, 1?a?b>0), the AlGaInN layer is grown at a growth rate less than 0.09 ?m/h according to the metal organic vapor phase epitaxy (MOPVE) method. The AlGaInN layer fabricated by the process in the present invention exhibits a high quality with low defect, and increases internal quantum yield.
    Type: Application
    Filed: November 19, 2009
    Publication date: October 28, 2010
    Inventors: Takayoshi Takano, Kenji Tsubaki, Hideki Hirayama, Sachie Fujikawa
  • Publication number: 20100265341
    Abstract: A first high-pass filter comprising a low-pass filter which allows only a frequency component of an input signal less than or equal to a first frequency to pass, a latch unit which latches an output of a low-pass filter according to a control signal, and a calculating unit which outputs a difference between an input signal and an output of the latch unit are provided on an image stabilization circuit. When latching in the latch unit is released, a held value of the latch unit is stepwise changed to the output value of the low-pass filter. Such a first high-pass filter is used in a centering process of an optical element.
    Type: Application
    Filed: April 21, 2010
    Publication date: October 21, 2010
    Applicants: SANYO ELECTRIC CO., LTD., SANYO SEMICONDUCTOR CO., LTD.
    Inventors: Hideki HIRAYAMA, Naoto IWATA
  • Patent number: 7811847
    Abstract: Because of a large lattice mismatch between a sapphire substrate and a group III-V compound semiconductor, a good crystal is difficult to grow. A high-quality AlN buffer growth structure A on a sapphire substrate includes a sapphire (0001) substrate 1, an AlN nucleation layer 3 formed on the sapphire substrate 1, a pulsed supplied AlN layer 5 formed on the AlN nucleation layer 3, and a continuous growth AlN layer 7 formed on the pulsed supplied AlN layer 5. Formed on the continuous growth AlN layer 7 is at least one set of a pulsed supplied AlN layer 11 and a continuous growth AlN layer 15. The AlN layer 3 is grown in an initial nucleation mode which is a first growth mode by using an NH3 pulsed supply method. The pulsed supplied AlN layer 5 is formed by using NH3 pulsed supply in a low growth mode which is a second growth mode that increases a grain size and reduces dislocations and therefore is capable of reducing dislocations and burying the nucleation layer 3.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: October 12, 2010
    Assignee: Riken
    Inventors: Hideki Hirayama, Tomoaki Ohashi, Norihiko Kamata
  • Publication number: 20100248349
    Abstract: An animal blood cell measuring apparatus comprising: a specimen preparation section for preparing a measurement specimen from blood of an animal; a characteristic information obtaining section for obtaining characteristic information indicating a characteristic of the measurement specimen, from the measurement specimen prepared by the specimen preparation section; and a controller configured for performing operations comprising: (a) classifying aggregate reticulocytes contained in the blood from other blood cells, based on the characteristic information obtained by the characteristic information obtaining section; and (b) outputting information regarding a number of the classified aggregate reticulocytes.
    Type: Application
    Filed: March 19, 2010
    Publication date: September 30, 2010
    Inventors: Yoichi Nakamura, Hideki Hirayama, Hideaki Matsumoto, Keiko Moriyama
  • Publication number: 20100219395
    Abstract: Devices and techniques related to UV light-emitting devices that can be implemented in ways that improve the light-emitting efficiency of an UV light-emitting device using a group III nitride semiconductor.
    Type: Application
    Filed: August 28, 2009
    Publication date: September 2, 2010
    Inventors: Hideki Hirayama, Tomohiko Shibata
  • Publication number: 20100207136
    Abstract: The present invention provides an inexpensive substrate which can realize m-plane growth of a crystal by vapor phase growth. In a sapphire substrate, an off-angle plane slanted from an m-plane by a predetermined very small angle is prepared as a growth surface, which is a template of the crystal, at the time of growing a crystal of GaN or the like, by a polishing process to prepare a stepwise substrate comprising steps and terraces. According to the above-described configuration, even if an inexpensive sapphire substrate, which normally does not form an m-plane (nonpolar plane) GaN film, is used as a substrate for crystal growth, the following advantages can be attained.
    Type: Application
    Filed: October 19, 2007
    Publication date: August 19, 2010
    Applicants: PANASONIC ELECTRIC WORKS CO., LTD., RIKEN
    Inventors: Robert David Armitage, Yukihiro Kondo, Hideki Hirayama
  • Publication number: 20100144078
    Abstract: To provide an elemental technique for improving the emission intensity of deep ultraviolet light from a light emitting layer made of an AlGaInN-based material, in particular, an AlGaN-based material. First, an AlN layer is grown on a sapphire surface. The AlN layer is grown under a NH3-rich condition. The TMAl pulsed supply sequence includes growing an AlGaN layer for 10 seconds, interrupting the growth for 5 seconds to remove NH3, and then introducing TMAl at a flow rate of 1 sccm for 5 seconds. After that, the growth is interrupted again for 5 seconds. Defining this sequence as one growth cycle, five growth cycles are carried out. By such growth, an AlGaN layer having a polarity of richness in Al can be obtained. The above sequence is described only for illustrative purposes, and various variations are possible. In general, the Al polarity can be achieved by a process of repeating both growth interruption and supply of an Al source.
    Type: Application
    Filed: February 11, 2010
    Publication date: June 10, 2010
    Applicant: RIKEN
    Inventors: Hideki Hirayama, Tomoaki Ohashi, Norihiko Kamata
  • Patent number: 7723739
    Abstract: A semiconductor light emitting device includes an n-type nitride semiconductor layer 3 formed on one surface side of a single-crystal substrate 1 for epitaxial growth through a first buffer layer 2, an emission layer 5 formed on a surface side of the n-type nitride semiconductor layer 3, and a p-type nitride semiconductor layer 6 formed on a surface side of the emission layer 5. The emission layer 5 has an AlGaInN quantum well structure, and a second buffer layer 4 having the same composition as a barrier layer 5a of the emission layer 5 is provided between the n-type nitride semiconductor layer 3 and the emission layer 5. In the semiconductor light emitting device, it is possible to increase emission intensity of the ultraviolet radiation as compared with a conventional configuration while using AlGaInN as a material of the emission layer.
    Type: Grant
    Filed: September 4, 2006
    Date of Patent: May 25, 2010
    Assignees: Panasonic Electric Works Co., Ltd., Riken
    Inventors: Takayoshi Takano, Yukihiro Kondo, Junji Ikeda, Hideki Hirayama
  • Publication number: 20100124411
    Abstract: An image stabilization control circuit of an image-capturing device prevents overflow of data in an integration process performed in a digital signal process on a signal outputted by a gyro-sensor. A gyro-filter receives, as an input, fixed-point format angular velocity data (D?) obtained by subjecting an output signal from the gyro-sensor to an analog-to-digital conversion. In the gyro-filter, an input format conversion circuit converts from fixed-point format to floating-point format. A camera shake vibration component is obtained from the floating-point format D?, is integrated, and data (D?) corresponding to an oscillation angle is generated. After a centering process is performed, D? is converted from floating-point format to fixed-point format by an output format conversion circuit, and outputted from the gyro-filter. A drive signal for driving an image stabilization mechanism is generated on the basis of the data outputted by the gyro-filter.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 20, 2010
    Applicants: SANYO ELECTRIC CO., LTD., SANYO SEMICONDUCTOR CO., LTD.
    Inventor: Hideki Hirayama
  • Patent number: 7691202
    Abstract: An object is to provide an ultraviolet light-emitting device in which a p-type semiconductor which has high conductivity and an emission peak in ultraviolet region, and emits light efficiently is used. The p-type semiconductor is prepared by supplying a p-type impurity raw material at the same time or after starting supply of predetermined types of crystal raw materials, besides before starting supply of other types of crystal raw materials than the predetermined types of crystal raw materials in one cycle wherein all the types of crystal raw materials of the plural types of crystal raw materials are supplied in one time each in case of making crystal growth by supplying alternately the plural types of crystal raw materials in a pulsed manner.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: April 6, 2010
    Assignee: Riken
    Inventors: Hideki Hirayama, Sohachi Iwai, Yoshinobu Aoyagi
  • Patent number: 7675069
    Abstract: For the purpose of emitting light in an ultraviolet short-wavelength region having a wavelength of 360 nm or shorter, it is arranged in InAlGaN in such that a ratio of composition of In is 2% to 20%, a ratio of composition of Al is 10% to 90%, and a total of ratios of composition in In, Al, and Ga is 100%.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: March 9, 2010
    Assignee: Riken
    Inventors: Hideki Hirayama, Yoshinobu Aoyagi
  • Publication number: 20090259427
    Abstract: Analyzers are described that includes a mode selector for selecting one measurement mode from said plurality of measurement modes; a display for displaying a screen; and a display controller for displaying on said screen a picture representing contents of the measurement mode selected by said mode selector.
    Type: Application
    Filed: March 18, 2009
    Publication date: October 15, 2009
    Inventor: Hideki Hirayama