Patents by Inventor Hiroaki Yamashita

Hiroaki Yamashita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9048313
    Abstract: A semiconductor device includes a semiconductor substrate and a plurality of gate electrodes including a part extended in a first direction in a plane parallel with the semiconductor substrate. The semiconductor substrate has a second semiconductor layer including a plurality of first conductive type pillars and second conductive type second pillars that are disposed on the first semiconductor layer, extending in the first direction in the plane parallel with the semiconductor substrate and in a third direction intersecting with a second direction orthogonal to the first direction, and arranged adjacent to each other in an alternate manner.
    Type: Grant
    Filed: September 8, 2012
    Date of Patent: June 2, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Syotaro Ono, Wataru Saito, Toshiyuki Naka, Shunji Taniuchi, Hiroaki Yamashita
  • Patent number: 9041101
    Abstract: A power semiconductor device according to an embodiment includes an element portion in which MOSFET elements are provided and a termination portion provided around the element portion, and has pillar layers provided respectively in parallel to each other in a semiconductor substrate. The device includes a first trench and a first insulation film. The first trench is provided between end portions of the pillar layers, in the semiconductor substrate at the termination portion exposed from a source electrode of the MOSFET elements. The first insulation film is provided on a side surface and a bottom surface of the first trench.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: May 26, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Syotaro Ono, Masaru Izumisawa, Hiroshi Ohta, Hiroaki Yamashita
  • Patent number: 9013005
    Abstract: According to an embodiment, a semiconductor device includes a second semiconductor layer provided on a first semiconductor layer and including first pillars and second pillars. A first control electrode is provided in a trench of the second semiconductor layer and a second control electrode is provided on the second semiconductor layer and connected to the first control electrode. A first semiconductor region is provided on a surface of the second semiconductor layer except for a portion under the second control electrode. A second semiconductor region is provided on a surface of the first semiconductor region, the second semiconductor region being apart from the portion under the second control electrode and a third semiconductor region is provided on the first semiconductor region. A first major electrode is connected electrically to the first semiconductor layer and a second major electrode is connected electrically to the second and the third semiconductor region.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: April 21, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Syotaro Ono, Wataru Saito, Shunji Taniuchi, Miho Watanabe, Hiroaki Yamashita, Toshiyuki Naka
  • Publication number: 20150014826
    Abstract: According to one embodiment, a semiconductor device includes a second electrode opposite to a first electrode, a first semiconductor layer provided above the first electrode, the first semiconductor layer having first semiconductor regions of a first conductivity type alternating with second semiconductor regions of a second conductivity type in a direction generally parallel to the first electrode A second semiconductor layer of the second conductivity type is provided on the first semiconductor layer Third extend into the first semiconductor layer from the second semiconductor layer. At least one first semiconductor region includes a first portion containing hydrogen ions and a second portion between the first portion and the second semiconductor layer that has a dopant concentration lower than that of the first portion.
    Type: Application
    Filed: February 24, 2014
    Publication date: January 15, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hideyuki URA, Hiroaki YAMASHITA, Syotaro ONO, Masaru IZUMISAWA
  • Publication number: 20140363938
    Abstract: A manufacturing method of an electric power semiconductor device includes following processes. A plurality of first second conductivity type impurity implantation layers are formed in a surface of a second semiconductor layer of a first conductivity type. A first trench is formed between a first non-implantation region and one of the plurality of first second conductivity type impurity implantation layers. An epitaxial layer of the first conductivity type is formed and covers the plurality of first second conductivity type impurity implantation layers. A plurality of second second conductivity type impurity implantation layers are formed in a surface of the epitaxial layer. A second trench is formed between a second non-implantation region and one of the plurality of second second conductivity type impurity implantation layers. A third semiconductor layer of the first conductivity type is formed and covers the plurality of second second conductivity type impurity implantation layers.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 11, 2014
    Inventors: Wataru SAITO, Syotaro ONO, Toshiyuki NAKA, Shunji TANIUCHI, Hiroaki YAMASHITA
  • Publication number: 20140319599
    Abstract: A first semiconductor device of an embodiment includes a first semiconductor layer of a first conductivity type, a first control electrode, an extraction electrode, a second control electrode, and a third control electrode. The first control electrode faces a second semiconductor layer of the first conductivity type, a third semiconductor layer of a second conductivity type, and a fourth semiconductor layer of a first conductivity type, via a first insulating film. The second control electrode and the third control electrode are electrically connected to the extraction electrode, and face the second semiconductor layer under the extraction electrode, via the second insulating film. At least a part of the second control electrode and the whole of the third control electrode are provided under the extraction electrode. The electrical resistance of the second control electrode is higher than the electrical resistance of the third control electrode.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Inventors: Wataru SAITO, Syotaro ONO, Toshiyuki NAKA, Shunji TANIUCHI, Miho WATANABE, Hiroaki YAMASHITA
  • Publication number: 20140284756
    Abstract: A semiconductor device includes a superjunction structure. The influence of external charge on device performance is suppressed using a shield electrode, field plate electrodes, and cover electrodes in various configurations. Optional embodiments include placing an interconnection film between certain electrodes and the upper surface of the superjunction structure. Cover electrodes may also be connected to various potentials to limit the effects of external charge on device performance.
    Type: Application
    Filed: May 7, 2014
    Publication date: September 25, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Syotaro ONO, Masaru IZUMISAWA, Hiroshi OHTA, Hiroaki YAMASHITA
  • Publication number: 20140284704
    Abstract: A semiconductor device comprising: a Metal Oxide Semiconductor Field Effect Transistor including: a semiconductor substrate including a first semiconductor layer of a first conductivity type; second semiconductor layers of a second conductivity type extending in a depth direction from one surface of the semiconductor substrate, and having space each other; a first diode including a fifth semiconductor layer of the second conductivity type contacting the second semiconductor layer in one surface side of the semiconductor substrate, the first semiconductor layer and the second semiconductor layers; and an anode of the second diode connected to an anode of the first diode.
    Type: Application
    Filed: April 7, 2014
    Publication date: September 25, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Wataru SAITO, Syotaro ONO, Toshiyuki NAKA, Shunji TANIUCHI, Hiroaki YAMASHITA
  • Patent number: 8829608
    Abstract: According to one embodiment, a semiconductor device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of the first conductivity type, a third semiconductor layer of a second conductivity type, a fourth semiconductor layer of the second conductivity type, a fifth semiconductor layer of the first conductivity type, a control electrode, a first main electrode, a second main electrode, and a sixth semiconductor layer of the first conductivity type. The second semiconductor layer and the third semiconductor layer are alternately provided on the first semiconductor layer in a direction substantially parallel to a major surface of the first semiconductor layer. The fourth semiconductor layer is provided on the second semiconductor layer and the third semiconductor layer. The fifth semiconductor layer is selectively provided on a surface of the fourth semiconductor layer. The control electrode is provided in a trench via an insulating film.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: September 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Shunji Taniuchi, Miho Watanabe, Hiroaki Yamashita
  • Patent number: 8816410
    Abstract: A first semiconductor device of an embodiment includes a first semiconductor layer of a first conductivity type, a first control electrode, an extraction electrode, a second control electrode, and a third control electrode. The first control electrode faces a second semiconductor layer of the first conductivity type, a third semiconductor layer of a second conductivity type, and a fourth semiconductor layer of a first conductivity type, via a first insulating film. The second control electrode and the third control electrode are electrically connected to the extraction electrode, and face the second semiconductor layer under the extraction electrode, via the second insulating film. At least a part of the second control electrode and the whole of the third control electrode are provided under the extraction electrode. The electrical resistance of the second control electrode is higher than the electrical resistance of the third control electrode.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: August 26, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Toshiyuki Naka, Shunji Taniuchi, Miho Watanabe, Hiroaki Yamashita
  • Publication number: 20140191310
    Abstract: A power semiconductor device according to an embodiment includes an element portion in which MOSFET elements are provided and a termination portion provided around the element portion, and has pillar layers provided respectively in parallel to each other in a semiconductor substrate. The device includes a first trench and a first insulation film. The first trench is provided between end portions of the pillar layers, in the semiconductor substrate at the termination portion exposed from a source electrode of the MOSFET elements. The first insulation film is provided on a side surface and a bottom surface of the first trench.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Syotaro ONO, Masaru IZUMISAWA, Hiroshi OHTA, Hiroaki YAMASHITA
  • Patent number: 8759938
    Abstract: A semiconductor device includes a superjunction structure. The influence of external charge on device performance is suppressed using a shield electrode, field plate electrodes, and cover electrodes in various configurations. Optional embodiments include placing an interconnection film between certain electrodes and the upper surface of the superjunction structure. Cover electrodes may also be connected to various potentials to limit the effects of external charge on device performance.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: June 24, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Syotaro Ono, Masaru Izumisawa, Hiroshi Ohta, Hiroaki Yamashita
  • Patent number: 8716789
    Abstract: A power semiconductor device according to an embodiment includes an element portion in which MOSFET elements are provided and a termination portion provided around the element portion, and has pillar layers provided respectively in parallel to each other in a semiconductor substrate. The device includes a first trench and a first insulation film. The first trench is provided between end portions of the pillar layers, in the semiconductor substrate at the termination portion exposed from a source electrode of the MOSFET elements. The first insulation film is provided on a side surface and a bottom surface of the first trench.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: May 6, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Syotaro Ono, Masaru Izumisawa, Hiroshi Ohta, Hiroaki Yamashita
  • Publication number: 20140103425
    Abstract: A semiconductor device includes a first semiconductor layer of a first conductivity type. A second semiconductor layer of a second conductivity type is on the first semiconductor layer. A third semiconductor layer is on the second semiconductor layer. A fourth semiconductor layer is selectively in the first semiconductor layer. A first trench and second trench penetrate from a surface of the third layer through the second layer to reach the first layer. An embedded electrode is in the first trench. A control electrode is above the embedded electrode via an insulating film. A lower end of the second trench is connected to the fourth semiconductor layer. A first main electrode is electrically connected to the first layer. A second main electrode is provided in the second trench. A Schottky junction is formed by the first layer and the second main electrode at a sidewall of the second trench.
    Type: Application
    Filed: December 16, 2013
    Publication date: April 17, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Wataru SAITO, Syotaro ONO, Shunji TANIUCHI, Miho WATANABE, Hiroaki YAMASHITA
  • Publication number: 20140077254
    Abstract: A semiconductor device includes an element region and an end region, the element region having a semiconductor element formed therein, and the end region surrounding the element region. The semiconductor device includes a semiconductor substrate, a trench, an insulating layer, and a field plate conductive layer. The trench is formed in the semiconductor substrate so as to surround the element region in the end region. The field plate conductive layer is formed in the trench via the insulating layer.
    Type: Application
    Filed: February 28, 2013
    Publication date: March 20, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masaru IZUMISAWA, Syotaro ONO, Hiroshi OHTA, Hiroaki YAMASHITA
  • Patent number: 8643091
    Abstract: A semiconductor device includes first, second, third, and fourth semiconductor layers of alternating first and second conductivity types, an embedded electrode in a first trench that penetrates through the second semiconductor layer, a control electrode above the embedded electrode in the first trench, and first and second main electrodes. The fourth semiconductor layer is selectively provided in the first semiconductor layer and is connected to a lower end of a second trench, which penetrates through the second semiconductor layer. The first main electrode is electrically connected to the first semiconductor layer, and the second main electrode is in the second trench and electrically connected to the second, third, and fourth semiconductor layers. The embedded electrode is electrically connected to the second main electrode or the control electrode. A Shottky junction formed of the second main electrode and the first semiconductor layer is formed at a sidewall of the second trench.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: February 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Shunji Taniuchi, Miho Watanabe, Hiroaki Yamashita
  • Publication number: 20140015044
    Abstract: According to an embodiment, a semiconductor device includes a second semiconductor layer provided on a first semiconductor layer and including first pillars and second pillars. A first control electrode is provided in a trench of the second semiconductor layer and a second control electrode is provided on the second semiconductor layer and connected to the first control electrode. A first semiconductor region is provided on a surface of the second semiconductor layer except for a portion under the second control electrode. A second semiconductor region is provided on a surface of the first semiconductor region, the second semiconductor region being apart from the portion under the second control electrode and a third semiconductor region is provided on the first semiconductor region. A first major electrode is connected electrically to the first semiconductor layer and a second major electrode is connected electrically to the second and the third semiconductor region.
    Type: Application
    Filed: September 19, 2013
    Publication date: January 16, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Syotaro ONO, Wataru SAITO, Shunji TANIUCHI, Miho WATANABE, Hiroaki YAMASHITA, Toshiyuki NAKA
  • Publication number: 20130341751
    Abstract: A semiconductor device includes a superjunction structure. The influence of external charge on device performance is suppressed using a shield electrode, field plate electrodes, and cover electrodes in various configurations. Optional embodiments include placing an interconnection film between certain electrodes and the upper surface of the superjunction structure. Cover electrodes may also be connected to various potentials to limit the effects of external charge on device performance.
    Type: Application
    Filed: November 26, 2012
    Publication date: December 26, 2013
    Inventors: Syotaro ONO, Masaru Izumisawa, Hiroshi Ohta, Hiroaki Yamashita
  • Publication number: 20130334597
    Abstract: A power semiconductor device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of the first conductivity type having an effective impurity concentration that is less than an effective impurity concentration of the first semiconductor layer arranged on the first semiconductor layer, a third semiconductor layer of a second conductivity type arranged on the second semiconductor layer, and a gate electrode formed in the first second semiconductor layer and the third semiconductor layer, wherein at least two regions are formed in the power semiconductor device, and a threshold voltage of the first region is different from a threshold voltage of the second region.
    Type: Application
    Filed: December 19, 2012
    Publication date: December 19, 2013
    Inventors: Hiroaki Yamashita, Masaru Izumisawa, Syotaro Ono, Hiroshi Ohta
  • Patent number: 8592917
    Abstract: According to an embodiment, a semiconductor device includes a second semiconductor layer provided on a first semiconductor layer and including first pillars and second pillars. A first control electrode is provided in a trench of the second semiconductor layer and a second control electrode is provided on the second semiconductor layer and connected to the first control electrode. A first semiconductor region is provided on a surface of the second semiconductor layer except for a portion under the second control electrode. A second semiconductor region is provided on a surface of the first semiconductor region, the second semiconductor region being apart from the portion under the second control electrode and a third semiconductor region is provided on the first semiconductor region. A first major electrode is connected electrically to the first semiconductor layer and a second major electrode is connected electrically to the second and the third semiconductor region.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Syotaro Ono, Wataru Saito, Shunji Taniuchi, Miho Watanabe, Hiroaki Yamashita, Toshiyuki Naka