Patents by Inventor Hiroshi Horikoshi

Hiroshi Horikoshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11028106
    Abstract: An object of the present invention is to provide a method capable of producing a tetraalkoxysilane with a high energy efficiency and with a high yield. The present invention provides a method for producing a tetraalkoxysilane, the method including: a first step of reacting an alcohol with a silicon oxide; and a second step of bringing a vaporized component of the reaction mixture obtained in the first step into contact with a molecular sieve.
    Type: Grant
    Filed: December 25, 2018
    Date of Patent: June 8, 2021
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Norihisa Fukaya, Seong-Jib Choi, Jun-Chul Choi, Toshio Horikoshi, Sho Kataoka, Thuy Nguyen, Kazuhiko Sato, Minoru Hasegawa, Hiroshi Kumai
  • Patent number: 10998369
    Abstract: A solid-state imaging device including: a first substrate having a pixel unit, and a first semiconductor substrate and a first wiring layer; a second substrate with a circuit, and a second semiconductor substrate and a second wiring layer; and a third substrate with a circuit, and a third semiconductor substrate and a third wiring layer. The first and second substrates are bonded together such that the first wiring layer and the second semiconductor substrate are opposed to each other. The device includes a first coupling structure for electrically coupling a circuit of the first substrate and the circuit of the second substrate. The first coupling structure includes a via in which electrically-conductive materials are embedded in a first through hole that exposes a wiring line in the first wiring layer and in a second through hole that exposes a wiring line in the second wiring layer or a film-formed structure.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: May 4, 2021
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Hideto Hashiguchi, Reijiroh Shohji, Hiroshi Horikoshi, Ikue Mitsuhashi, Tadashi Iijima, Takatoshi Kameshima, Minoru Ishida, Masaki Haneda
  • Patent number: 10982094
    Abstract: Provided is an optical material composition which makes it possible to design an optical material exhibiting a broad range of properties. This optical material composition contains a compound (A) represented by formula (1), 1,2,3,5,6-pentathiepane (b), and if necessary, a compound (B) represented by formula (2). The content of the compound (B) constitutes 0-30 mass % of the total mass of the composition: (In the formula, n m represents an integer which is 0-4, and n represents an integer which is 0-2).
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: April 20, 2021
    Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Yoshihiko Nishimori, Yosuke Imagawa, Kouhei Takemura, Hiroshi Horikoshi, Yoshiaki Yamamoto
  • Publication number: 20210104571
    Abstract: There is provided a solid-state imaging device including: a first substrate including a first semiconductor substrate and a first wiring layer, the first semiconductor substrate having a pixel unit with pixels; a second substrate including a second semiconductor substrate and a second wiring layer, the second semiconductor substrate having a circuit with a predetermined function; and a third substrate including a third semiconductor substrate and a third wiring layer, the third semiconductor substrate having a circuit with a predetermined function, the first, second, and third substrates being stacked in this order, the first substrate and the second substrate being bonded together with the first wiring layer and the second wiring layer opposed to each other, a first coupling structure on bonding surfaces of the first substrate and the second substrate, and including an electrode junction structure with electrodes formed on the respective bonding surfaces in direct contact with each other.
    Type: Application
    Filed: March 23, 2018
    Publication date: April 8, 2021
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Reijiroh SHOHJI, Masaki HANEDA, Hiroshi HORIKOSHI, Minoru ISHIDA, Takatoshi KAMESHIMA, Ikue MITSUHASHI, Hideto HASHIGUCHI, Tadashi IIJIMA
  • Publication number: 20210104570
    Abstract: [Object] To provide a solid-state imaging device and an electronic apparatus with further improved performance.
    Type: Application
    Filed: March 23, 2018
    Publication date: April 8, 2021
    Inventors: IKUE MITSUHASHI, REIJIROH SHOHJI, MINORU ISHIDA, TADASHI IIJIMA, TAKATOSHI KAMESHIMA, HIDETO HASHIGUCHI, HIROSHI HORIKOSHI, MASAKI HANEDA
  • Publication number: 20210104572
    Abstract: There is provided a solid-state imaging device including first, second, and third substrates stacked in this order. The first substrate includes a first semiconductor substrate and a first wiring layer. A pixel unit is formed on the first semiconductor substrate. The second substrate includes a second semiconductor substrate and a second wiring layer. The third substrate includes a third semiconductor substrate and a third wiring layer. A first coupling structure couples two of the first, second, and third substrates to each other includes a via. The via has a structure in which electrically-conductive materials are embedded in one through hole and another through hole, or a structure in which films including electrically-conductive materials are formed on inner walls of the through holes. The one through hole exposes a first wiring line in one of the wiring layers. The other through hole exposes a second wiring line in another wiring layer.
    Type: Application
    Filed: March 23, 2018
    Publication date: April 8, 2021
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Takatoshi KAMESHIMA, Hideto HASHIGUCHI, Ikue MITSUHASHI, Hiroshi HORIKOSHI, Reijiroh SHOHJI, Minoru ISHIDA, Tadashi IIJIMA, Masaki HANEDA
  • Publication number: 20210024478
    Abstract: The present invention makes it possible to provide a method for producing a polyfunctional sulfur-containing epoxy compound, the method being characterized in that a polyfunctional thiol is reacted with an epihalohydrin in the presence of a reducing agent to form a polyfunctional sulfur-containing halohydrin, which is then reacted with a basic compound. The reducing agent is preferably at least one selected from the group consisting of sodium borohydride, lithium borohydride, lithium aluminum hydride, diisobutylaluminum hydride, and hydrazine.
    Type: Application
    Filed: June 11, 2019
    Publication date: January 28, 2021
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Yousuke IMAGAWA, Hiroshi HORIKOSHI
  • Publication number: 20210009553
    Abstract: The present invention enables provision of a production method for 1,2,3,5,6-pentathiepane, the method comprising, in the following order, step A for reacting a trithiocarbonate, sulfur, and a methane dihalide together using a phase-transfer catalyst in a multilayer system having a water layer and an organic layer, step B for separating the water layer from the organic layer, and step C for stopping the reaction using an acid.
    Type: Application
    Filed: March 5, 2019
    Publication date: January 14, 2021
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Hiroyuki TANAGI, Kouhei TAKEMURA, Hiroshi HORIKOSHI
  • Patent number: 10767015
    Abstract: The present invention makes it possible to provide an optical material composition containing an episulfide compound (A), a polythiol compound (B), and a photochromic compound (C). The episulfide compound (A) is preferably a compound represented by formula (1), and the polythiol compound (B) is preferably a compound represented by formula (6). (In formula (1), m represents an integer of 0 to 4, and n represents an integer of 0 to 2.) (In formula (6), n represents an integer of 4 to 20, and R1 and R2 may be the same or different and represent H, SH, C1-10 alkyl groups, or C1-10 alkylthiol groups.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: September 8, 2020
    Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Kota Kinjo, Yoshiaki Yamamoto, Hiroshi Horikoshi
  • Publication number: 20200270421
    Abstract: Provided is an optical resin material for chromatic aberration correction, comp including at least 5 mass % of a compound (component A) represented by general formula (1) or general formula (3). (In the formula, R1 to R6 each independently represent a structure represented by general formula (2).) (In the formula, the broken line represents a binding site, n1 represents an integer of 0-3, n2 represents an integer of 0 or 1, n3 represents an integer of 0-4, R7 represents hydrogen, an acryl group, a methacryl group, a cyanoacryl group, a cyclic ether group, an allyl group, a propargyl group, a hydroxy group, an isocyanate group, chlorine, or an optionally branched alkyl group having 1-8 carbon atoms, and X represents a lactone-modified ketone chain or an alkylene glycol chain having 2-7 carbon atoms.) (In the formula, R1 to R6 each independently represent a structure represented by general formula (2).
    Type: Application
    Filed: December 17, 2018
    Publication date: August 27, 2020
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Kosuke NAMIKI, Sunao NOJIMA, Shoko SUZUKI, Noriyuki KATO, Hiroshi HORIKOSHI
  • Publication number: 20200243591
    Abstract: [Object] To further improve performance of a solid-state imaging device. [Solution] There is provided a solid-state imaging device including: a first substrate; a second substrate; and a third substrate that are stacked in this order. The first substrate includes a first semiconductor substrate and a first multi-layered wiring layer stacked on the first semiconductor substrate. The first semiconductor substrate has a pixel unit formed thereon. The pixel unit has pixels arranged thereon. The second substrate includes a second semiconductor substrate and a second multi-layered wiring layer stacked on the second semiconductor substrate. The second semiconductor substrate has a circuit formed thereon. The circuit has a predetermined function. The third substrate includes a third semiconductor substrate and a third multi-layered wiring layer stacked on the third semiconductor substrate. The third semiconductor substrate has a circuit formed thereon. The circuit has a predetermined function.
    Type: Application
    Filed: March 23, 2018
    Publication date: July 30, 2020
    Inventors: TADASHI IIJIMA, TAKATOSHI KAMESHIMA, IKUE MITSUHASHI, HIROSHI HORIKOSHI, HIDETO HASHIGUCHI, REIJIROH SHOHJI, MINORU ISHIDA, MASAKI HANEDA
  • Publication number: 20200216616
    Abstract: Provided an optical material composition which makes it possible to design an optical material exhibiting a broad range of properties. This optical material composition contains a compound (A) represented by formula (1) and a polythiol (a), and does not contain 1,2,3,5,6-pentathiepane (b).
    Type: Application
    Filed: February 6, 2018
    Publication date: July 9, 2020
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Yoshihiko NISHIMORI, Yosuke IMAGAWA, Kouhei TAKEMURA, Hiroshi HORIKOSHI, Yoshiaki YAMAMOTO
  • Patent number: 10647819
    Abstract: According to the present invention, it is possible to provide a photocurable composition which comprises a cyclic compound (a) represented by formula (1), an episulfide compound (b), and a photopolymerization initiator (c). In a preferred embodiment, the proportion of the cyclic compound (a) in the photocurable composition is 5-80 mass %, the proportion of the episulfide compound (b) is 20-95 mass %, and the proportion of the photopolymerization initiator (c) is 0.1-10 parts by mass per 100 parts by mass of the sum of the cyclic compound (a) and the episulfide compound (b). In the formula, C represents a carbon atom, X represents S, Se, or Te, and a to f are integers of 0-3, provided that 8?(a+c+e)?1, 8?(b+d+f)?2, and (b+d+f)?(a+c+e).
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: May 12, 2020
    Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Kousuke Namiki, Yousuke Imagawa, Eiji Koshiishi, Kikuo Furukawa, Hiroshi Horikoshi
  • Publication number: 20200105814
    Abstract: A solid-state imaging device including: a first substrate having a pixel unit, and a first semiconductor substrate and a first wiring layer; a second substrate with a circuit, and a second semiconductor substrate and a second wiring layer; and a third substrate with a circuit, and a third semiconductor substrate and a third wiring layer. The first and second substrates are bonded together such that the first wiring layer and the second semiconductor substrate are opposed to each other. The device includes a first coupling structure for electrically coupling a circuit of the first substrate and the circuit of the second substrate. The first coupling structure includes a via in which electrically-conductive materials are embedded in a first through hole that exposes a wiring line in the first wiring layer and in a second through hole that exposes a wiring line in the second wiring layer or a film-formed structure.
    Type: Application
    Filed: March 23, 2018
    Publication date: April 2, 2020
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Hideto HASHIGUCHI, Reijiroh SHOHJI, Hiroshi HORIKOSHI, Ikue MITSUHASHI, Tadashi IIJIMA, Takatoshi KAMESHIMA, Minoru ISHIDA, Masaki HANEDA
  • Publication number: 20200105813
    Abstract: [Object] To provide a solid-state imaging device and an electronic apparatus with further improved performance. [Solution] A solid-state imaging device including: a first substrate on which a pixel unit is formed, and a first semiconductor substrate and a first multi-layered wiring layer are stacked; a second substrate on which a circuit having a predetermined function is formed, and a second semiconductor substrate and a second multi-layered wiring layer are stacked; and a third substrate on which a circuit having a predetermined function is formed, and a third semiconductor substrate and a third multi-layered wiring layer are stacked. The first substrate, the second substrate, and the third substrate are stacked in this order. The pixel unit has pixels arranged thereon. The first substrate and the second substrate are bonded together in a manner that the first multi-layered wiring layer and the second semiconductor substrate are opposed to each other.
    Type: Application
    Filed: March 23, 2018
    Publication date: April 2, 2020
    Inventors: HIDETO HASHIGUCHI, REIJIROH SHOHJI, HIROSHI HORIKOSHI, IKUE MITSUHASHI, TADASHI IIJIMA, TAKATOSHI KAMESHIMA, MINORU ISHIDA, MASAKI HANEDA
  • Publication number: 20200098815
    Abstract: [Object] To further improve performance of a solid-state imaging device.
    Type: Application
    Filed: March 23, 2018
    Publication date: March 26, 2020
    Inventors: TAKATOSHI KAMESHIMA, HIDETO HASHIGUCHI, IKUE MITSUHASHI, HIROSHI HORIKOSHI, REIJIROH SHOHJI, MINORU ISHIDA, TADASHI IIJIMA, MASAKI HANEDA
  • Publication number: 20200091217
    Abstract: [Object] To provide a solid-state imaging device and an electronic apparatus with further improved performance. [Solution] A solid-state imaging device including: a first substrate on which a pixel unit is formed, and a first semiconductor substrate and a first multi-layered wiring layer are stacked; a second substrate on which a circuit having a predetermined function is formed, and a second semiconductor substrate and a second multi-layered wiring layer are stacked; and a third substrate on which a circuit having a predetermined function is formed, and a third semiconductor substrate and a third multi-layered wiring layer are stacked. The first substrate, the second substrate, and the third substrate are stacked in this order. The pixel unit has pixels arranged thereon. The first substrate and the second substrate are bonded together with the first multi-layered wiring layer and the second semiconductor substrate opposed to each other.
    Type: Application
    Filed: March 23, 2018
    Publication date: March 19, 2020
    Inventors: HIROSHI HORIKOSHI, MINORU ISHIDA, REIJIROH SHOHJI, TADASHI IIJIMA, TAKATOSHI KAMESHIMA, HIDETO HASHIGUCHI, IKUE MITSUHASHI, MASAKI HANEDA
  • Publication number: 20200024450
    Abstract: Provided is an optical material composition which makes it possible to design an optical material exhibiting a broad range of properties. This optical material composition contains a compound (A) represented by formula (1), 1,2,3,5,6-pentathiepane (b), and if necessary, a compound (B) represented by formula (2). The content of the compound (B) constitutes 0-30 mass % of the total mass of the composition: (In the formula, n m represents an integer which is 0-4, and n represents an integer which is 0-2).
    Type: Application
    Filed: February 6, 2018
    Publication date: January 23, 2020
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Yoshihiko NISHIMORI, Yosuke IMAGAWA, Kouhei TAKEMURA, Hiroshi HORIKOSHI, Yoshiaki YAMAMOTO
  • Patent number: 10526452
    Abstract: The present invention can provide a method for producing a cured product of an episulfide-based resin, the method having: (A) a step for obtaining a composition for a resin by mixing compound (a), compound (b) and a polymerization catalyst; (B) a step for pouring the composition for a resin into a mold; and (C) a step in which, by increasing the temperature of a heating medium, the composition for a resin is polymerized in the heating medium that contains a liquid having a thermal conductivity of 0.2 W/m·K or higher, or in a shower of the heating medium. The maximum temperature of the heating medium in step (C) is 55 to 110° C. (a) A compound which has two episulfide groups per molecule and which is represented by formula (1): wherein m represents an integer from 0 to 4 and n represents an integer from 0 to 2 (b) A compound having one or more thiol groups per molecule.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: January 7, 2020
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kousuke Namiki, Sawako Fuse, Eiji Koshiishi, Kikuo Furukawa, Hiroshi Horikoshi
  • Patent number: 10508173
    Abstract: The present invention provides a composition for an optical material containing a ring compound (a) represented by formula (1), an episulfide compound (b), and sulfur (c), wherein the content of the ring compound (a) in the composition for an optical material is in the range of 5-70 mass %, the content of the episulfide compound (b) is in the range of 20-90 mass %, and the content of the sulfur (c) is in the range of 1-39 mass %. (In the formula, X represents S, Se or Te. a to f=0 to 3, 8?(a+c+e)?1, 8?(b+d+f)?2, and (b+d+f)?(a+c+e).) This composition for an optical material has a high refractive index as an optical characteristic, and has sufficient heat resistance and good mold release characteristics.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: December 17, 2019
    Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Yousuke Imagawa, Akinobu Horita, Yoshiaki Yamamoto, Hiroshi Horikoshi