Patents by Inventor Hongbin Zhu

Hongbin Zhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11088168
    Abstract: Some embodiments include a semiconductor device having a stack structure including a source comprising polysilicon, an etch stop of oxide on the source, a select gate source on the etch stop, a charge storage structure over the select gate source, and a select gate drain over the charge storage structure. The semiconductor device may further include an opening extending vertically into the stack structure to a level adjacent to the source. A channel comprising polysilicon may be formed on a side surface and a bottom surface of the opening. The channel may contact the source at a lower portion of the opening, and may be laterally separated from the charge storage structure by a tunnel oxide. A width of the channel adjacent to the select gate source is greater than a width of the channel adjacent to the select gate drain.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: August 10, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Zhenyu Lu, Gordon Haller, Jie Sun, Randy J. Koval, John Hopkins
  • Publication number: 20210242233
    Abstract: A method for forming a 3D memory device is disclosed. A gate electrode having an inverted “T” shape is formed above a substrate. A continuous blocking layer is formed on the gate electrode. A continuous charge trapping layer is formed on the blocking layer. A first thickness of a first part of the charge trapping layer extending laterally is greater than a second thickness of a second part of the charge trapping layer extending vertically. The second part of the charge trapping layer extending vertically is removed to form a plurality of discrete charge trapping layers disposed at different levels on the blocking layer from the first part of the charge trapping layer extending laterally. A continuous tunneling layer is formed on the discrete charge trapping layers. A continuous channel layer is formed on the tunneling layer.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Inventor: Hongbin Zhu
  • Publication number: 20210225858
    Abstract: Embodiments of structure and methods for forming a three-dimensional (3D) memory device are provided. In an example, a 3D memory device includes a substrate and a stack structure in an insulating structure on the substrate. The stack structure includes alternating a plurality of conductor layers and a plurality of insulating layers. The 3D memory device further includes a source structure extending vertically through the alternating stack structure. The source structure includes at least one staggered portion along a respective sidewall. The 3D memory device further includes a channel structure and a support pillar each extending vertically through the alternating stack structure and a plurality of contact structures extending vertically through the insulating structure.
    Type: Application
    Filed: March 19, 2021
    Publication date: July 22, 2021
    Inventors: Hongbin Zhu, Juan Tang
  • Patent number: 11049866
    Abstract: Embodiments of three-dimensional (3D) memory devices having through array contacts (TACs) and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A dielectric stack including a plurality of dielectric/sacrificial layer pairs is formed on a substrate. A channel structure extending vertically through the dielectric stack is formed. A first opening extending vertically through the dielectric stack is formed. A spacer is formed on a sidewall of the first opening. A TAC extending vertically through the dielectric stack is formed by depositing a conductor layer in contact with the spacer in the first opening. A slit extending vertically through the dielectric stack is formed after forming the TAC. A memory stack including a plurality of conductor/dielectric layer pairs is formed on the substrate by replacing, through the slit, the sacrificial layers in the dielectric/sacrificial layer pairs with a plurality of conductor layers.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: June 29, 2021
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Mei Lan Guo, Yushi Hu, Ji Xia, Hongbin Zhu
  • Patent number: 11043505
    Abstract: Embodiments of structure and methods for forming a three-dimensional (3D) memory device are provided. In an example, a 3D memory device includes a substrate, an alternating layer stack on the substrate, and a barrier structure extending vertically through the alternating layer stack. The alternating layer stack includes (i) an alternating dielectric stack having a plurality of dielectric layer pairs enclosed laterally by at least the barrier structure, and (ii) an alternating conductor/dielectric stack having a plurality of conductor/dielectric layer pairs. The 3D memory device also includes a channel structure and a source structure each extending vertically through the alternating conductor/dielectric stack, and a contact structure extending vertically through the alternating dielectric stack. The source structure includes at least one staggered portion along a respective sidewall.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: June 22, 2021
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Hongbin Zhu, Juan Tang
  • Publication number: 20210183765
    Abstract: Embodiments of 3D memory devices and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A structure extending vertically through a memory stack including interleaved conductive layers and dielectric layers is formed above a substrate. A first dielectric layer is formed on the memory stack. An etch stop layer is formed on the first dielectric layer. A first contact is formed through the etch stop layer and the first dielectric layer and in contact with an upper end of the structure. A second dielectric layer is formed on the etch stop layer. A second contact is formed through the second dielectric layer and in contact with at least an upper end of the first contact.
    Type: Application
    Filed: February 26, 2021
    Publication date: June 17, 2021
    Inventors: Hongbin Zhu, Juan Tang, Zi Qun Hua
  • Publication number: 20210159247
    Abstract: Embodiments of 3D memory devices and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A channel opening extending vertically is formed above a substrate. A semiconductor plug is formed in a lower portion of the channel opening. A memory film and a channel sacrificial layer are subsequently formed above the semiconductor plug and along a sidewall of the channel opening. A semiconductor plug protrusion protruding above the semiconductor plug and through a bottom of the memory film and the channel sacrificial layer is formed. A cap layer is formed in the channel opening and over the channel sacrificial layer. The cap layer covers the semiconductor plug protrusion. A semiconductor channel is formed between the memory film and the cap layer by replacing the channel sacrificial layer with a semiconductor material epitaxially grown from the semiconductor plug protrusion.
    Type: Application
    Filed: February 3, 2021
    Publication date: May 27, 2021
    Inventor: Hongbin Zhu
  • Patent number: 11018097
    Abstract: Guard ring technology is disclosed. In one example, an electronic component guard ring can include a barrier having a first barrier portion and a second barrier portion oriented end to end to block ion diffusion and crack propagation in an electronic component. The guard ring can also include an opening in the barrier between the first and second barrier portions extending between a first side and a second side of the barrier. Associated systems and methods are also disclosed.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: May 25, 2021
    Assignee: Intel Corporation
    Inventors: Hongbin Zhu, Minsoo Lee, Gordon A. Haller, Philip J. Ireland
  • Patent number: 11018155
    Abstract: A method of forming a vertical string of memory cells comprises forming a lower stack comprising first alternating tiers comprising vertically-alternating control gate material and insulating material. An upper stack is formed over the lower stack, and comprises second alternating tiers comprising vertically-alternating control gate material and insulating material having an upper opening extending elevationally through multiple of the second alternating tiers. The lower stack comprises a lower opening extending elevationally through multiple of the first alternating tiers and that is occluded by occluding material. At least a portion of the upper opening is elevationally over the occluded lower opening. The occluding material that occludes the lower opening is removed to form an interconnected opening comprising the unoccluded lower opening and the upper opening.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: May 25, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Charles H. Dennison, Gordon A. Haller, Merri L. Carlson, John D. Hopkins, Jia Hui Ng, Jie Sun
  • Publication number: 20210143174
    Abstract: Embodiments of 3D memory devices and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A dielectric stack including interleaved sacrificial layers and dielectric layers is formed above a substrate. A channel structure extending vertically through the dielectric stack is formed. A local dielectric layer is formed on the dielectric stack. A channel local contact opening through the local dielectric layer to expose an upper end of the channel structure, and a slit opening extending vertically through the local dielectric layer and the dielectric stack are simultaneously formed. A memory stack including interleaved conductive layers and the dielectric layers is formed by replacing, through the slit opening, the sacrificial layers with the conductive layers. A channel local contact in the channel local contact opening, and a slit structure in the slit opening are simultaneously formed.
    Type: Application
    Filed: January 18, 2021
    Publication date: May 13, 2021
    Inventors: Hongbin Zhu, Juan Tang, Wei Xu
  • Patent number: 11004948
    Abstract: Embodiments of three-dimensional (3D) memory devices and methods for forming the same are disclosed. In an example, a 3D memory device includes a substrate, a gate electrode having a two-sided staircase shape above the substrate, a blocking layer on the gate electrode, a plurality of discrete charge trapping layers each extending laterally on the blocking layer, a tunneling layer on the plurality of charge trapping layers, and a plurality of discrete channel layers each extending laterally on the tunneling layer. The plurality of charge trapping layers are disposed corresponding to stairs of the two-sided staircase shape of the gate electrode, respectively. The plurality of channel layers are disposed corresponding to the stairs of the two-sided staircase shape, respectively.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: May 11, 2021
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventor: Hongbin Zhu
  • Publication number: 20210126002
    Abstract: Embodiments of structure and methods for forming a three-dimensional (3D) memory device are provided. In an example, a 3D memory device includes a substrate, an alternating layer stack on the substrate, and a barrier structure extending vertically through the alternating layer stack. The alternating layer stack includes (i) an alternating dielectric stack having a plurality of dielectric layer pairs enclosed laterally by at least the barrier structure, and (ii) an alternating conductor/dielectric stack having a plurality of conductor/dielectric layer pairs. The 3D memory device also includes a channel structure and a source structure each extending vertically through the alternating conductor/dielectric stack, and a contact structure extending vertically through the alternating dielectric stack. The source structure includes at least one staggered portion along a respective sidewall.
    Type: Application
    Filed: January 4, 2021
    Publication date: April 29, 2021
    Inventors: Hongbin Zhu, Juan Tang
  • Publication number: 20210104531
    Abstract: Embodiments of three-dimensional (3D) memory devices having through array contacts (TACs) and methods for forming the same are disclosed. In an example, a 3D memory device includes a substrate, a memory stack on the substrate comprising a plurality of conductor/dielectric layer pairs, a channel structure extending vertically through the conductor/dielectric layer pairs in the memory stack, a TAC extending vertically through the conductor/dielectric layer pairs in the memory stack, and a dummy channel structure filled with a dielectric layer and extending vertically through the conductor/dielectric layer pairs in the memory stack.
    Type: Application
    Filed: November 21, 2020
    Publication date: April 8, 2021
    Inventors: Mei Lan Guo, Yushi Hu, Ji Xia, Hongbin Zhu
  • Publication number: 20210104542
    Abstract: Embodiments of three-dimensional (3D) memory devices formed by bonded semiconductor devices and methods for forming the same are disclosed. In an example, a method for forming a semiconductor device is disclosed. The method includes the following operations. First, an insulating material layer can be formed over a substrate. In an example, single-crystalline silicon is not essential to the substrate. The insulating material layer can be patterned to form an isolation structure and a plurality of trenches in the isolation structure. A semiconductor material can be deposited to fill up the plurality of trenches to form a plurality of array-base regions in the isolation structure, the isolation structure insulating the plurality of array-base regions from one another. Further, a plurality of memory arrays can be formed over the plurality of array-base regions, and an insulating structure can be formed to cover the plurality of memory arrays and the plurality of array-base regions.
    Type: Application
    Filed: November 21, 2020
    Publication date: April 8, 2021
    Inventors: Shengwei Yang, Zhongyi Xia, Kun Han, Kang Li, Xiaoguang Wang, Hongbin Zhu
  • Publication number: 20210098488
    Abstract: Embodiments of three-dimensional (3D) memory devices and methods for forming the same are disclosed. In an example, a 3D memory device includes a substrate and a plurality of memory decks stacked above the substrate. Each of the memory decks includes a gate electrode, a blocking layer on the gate electrode, a plurality of charge trapping layers on the blocking layer, a tunneling layer on the plurality of charge trapping layers, a channel layer on the tunneling layer, and an inter-deck dielectric layer on the channel layer. The plurality of charge trapping layers are discrete and disposed at different levels. A top surface of the inter-deck dielectric layer is nominally flat. The gate electrode of another one of the memory decks immediately above the memory deck is disposed on the top surface of the inter-deck dielectric layer.
    Type: Application
    Filed: December 26, 2019
    Publication date: April 1, 2021
    Inventor: Hongbin Zhu
  • Publication number: 20210098489
    Abstract: Embodiments of 3D memory devices and methods for forming the same are disclosed. In an example, a 3D memory device includes a substrate, a memory stack including interleaved conductive layers and dielectric layers above the substrate, and a memory string extending vertically through the memory stack. The memory string includes a single crystalline silicon plug in a lower portion of the memory string, a memory film above the single crystalline silicon plug and along a sidewall of the memory string, and a single crystalline silicon channel over the memory film and along the sidewall of the memory string.
    Type: Application
    Filed: December 26, 2019
    Publication date: April 1, 2021
    Inventor: Hongbin Zhu
  • Publication number: 20210098484
    Abstract: Embodiments of three-dimensional (3D) memory devices and methods for forming the same are disclosed. In an example, a 3D memory device includes a substrate, a gate electrode above the substrate, a blocking layer on the gate electrode, a plurality of charge trapping layers on the blocking layer, a tunneling layer on the plurality of charge trapping layers, and a plurality of channel layers on the tunneling layer. The plurality of charge trapping layers are discrete and disposed at different levels. The plurality of channel layers are discrete and disposed at different levels. Each of the channel layers corresponds to a respective one of the charge trapping layers.
    Type: Application
    Filed: December 26, 2019
    Publication date: April 1, 2021
    Inventor: Hongbin Zhu
  • Publication number: 20210098587
    Abstract: Embodiments of three-dimensional (3D) memory devices and methods for forming the same are disclosed. In an example, a 3D memory device includes a substrate, a gate electrode having a two-sided staircase shape above the substrate, a blocking layer on the gate electrode, a plurality of discrete charge trapping layers each extending laterally on the blocking layer, a tunneling layer on the plurality of charge trapping layers, and a plurality of discrete channel layers each extending laterally on the tunneling layer. The plurality of charge trapping layers are disposed corresponding to stairs of the two-sided staircase shape of the gate electrode, respectively. The plurality of channel layers are disposed corresponding to the stairs of the two-sided staircase shape, respectively.
    Type: Application
    Filed: December 26, 2019
    Publication date: April 1, 2021
    Inventor: Hongbin Zhu
  • Publication number: 20210091102
    Abstract: Embodiments of structure and methods for forming a three-dimensional (3D) memory device are provided. In an example, a 3D memory device includes a substrate, an alternating layer stack on the substrate, and a barrier structure extending vertically through the alternating layer stack. The alternating layer stack includes (i) an alternating dielectric stack having a plurality of dielectric layer pairs enclosed laterally by at least the barrier structure, and (ii) an alternating conductor/dielectric stack having a plurality of conductor/dielectric layer pairs. The 3D memory device also includes a channel structure and a source structure each extending vertically through the alternating conductor/dielectric stack, and a contact structure extending vertically through the alternating dielectric stack. The source structure includes at least one staggered portion along a respective sidewall.
    Type: Application
    Filed: December 26, 2019
    Publication date: March 25, 2021
    Inventors: Hongbin Zhu, Juan Tang
  • Publication number: 20210091103
    Abstract: Embodiments of structure and methods for forming a three-dimensional (3D) memory device are provided. In an example, a 3D memory device includes a substrate and a stack structure in an insulating structure on the substrate. The stack structure includes alternating a plurality of conductor layers and a plurality of insulating layers. The 3D memory device further includes a source structure extending vertically through the alternating stack structure. The source structure includes at least one staggered portion along a respective sidewall. The 3D memory device further includes a channel structure and a support pillar each extending vertically through the alternating stack structure and a plurality of contact structures extending vertically through the insulating structure.
    Type: Application
    Filed: December 26, 2019
    Publication date: March 25, 2021
    Inventors: Hongbin Zhu, Juan Tang