Patents by Inventor Hongbin Zhu

Hongbin Zhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10453829
    Abstract: In one embodiment, an apparatus comprises a tier comprising alternating first and second layers, wherein the first layers comprise a first conductive material and the second layers comprise a first dielectric material; a lower metal layer below the tier; a bond pad above the tier, the bond pad coupled to the lower metal layer by a via extending through the tier; and a first channel formed through a portion of the tier, the first channel surrounding the via, the first channel comprising a second dielectric material.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: October 22, 2019
    Assignee: Intel Corporation
    Inventors: Merri Lyn Carlson, Hongbin Zhu, Gordon A. Haller, James E. Davis, Kevin G. Duesman, James Mathew, Michael P. Violette
  • Patent number: 10446571
    Abstract: A method used in forming a vertical string of memory cells and a conductive via comprises forming a first lower opening and a second lower opening into a lower material. A first material is formed within the first and second lower openings. An upper material is formed above the lower material and above the first material in the first and second lower openings. A first upper opening is formed through the upper material to the first material in the first lower opening. At least a majority of the first material is removed from the first lower opening through the first upper opening and channel material is formed within the first lower and first upper openings for the vertical string of memory cells being formed. After forming the channel material, a second upper opening is formed through the upper material to the first material in the second lower opening. Conductive material of the conductive via is formed within the second upper opening. Structure embodiments independent of method of formation are disclosed.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: October 15, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Gurtej S. Sandhu, Kunal R. Parekh
  • Patent number: 10446507
    Abstract: A semiconductor device includes a semiconductor die comprising integrated circuitry over a substrate of a semiconductor material. A first die ring comprises one or more electrically conductive materials at least partially surrounding the integrated circuitry, the one or more electrically conductive materials comprising an electrically conductive path from proximate a surface of the substrate to an exposed surface of the semiconductor die. A second die ring comprises an electrically conductive material and is disposed around the first die ring. A first electrically conductive interconnect electrically connects the first die ring and to second die ring. Related semiconductor devices and semiconductor dice are disclosed.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: October 15, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Qinglin Zeng, Daniel Osterberg, Merri L. Carlson, Gordon A. Haller, Jeremy Adams
  • Patent number: 10438968
    Abstract: Some embodiments include a memory array which has a stack of alternating first and second levels. Channel material pillars extend through the stack, and vertically-stacked memory cell strings are along the channel material pillars. A common source is under the stack and electrically coupled to the channel material pillars. The common source has conductive protective material over and directly against metal silicide, with the conductive protective material being a composition other than metal silicide. Some embodiments include methods of fabricating integrated structures.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: October 8, 2019
    Assignee: Micron Technology, Inc.
    Inventors: John M. Meldrin, Yushi Hu, Rita J. Klein, John D. Hopkins, Hongbin Zhu, Gordon A. Haller, Luan C. Tran
  • Publication number: 20190280007
    Abstract: Some embodiments include a memory array which has a stack of alternating first and second levels. Channel material pillars extend through the stack, and vertically-stacked memory cell strings are along the channel material pillars. A common source is under the stack and electrically coupled to the channel material pillars. The common source has conductive protective material over and directly against metal silicide, with the conductive protective material being a composition other than metal silicide. Some embodiments include methods of fabricating integrated structures.
    Type: Application
    Filed: May 15, 2019
    Publication date: September 12, 2019
    Inventors: John M. Meldrim, Yushi Hu, Rita J. Klein, John D. Hopkins, Hongbin Zhu, Gordon A. Haller, Luan C. Tran
  • Publication number: 20190229126
    Abstract: Some embodiments include a method of forming vertically-stacked memory cells. An opening is formed through a stack of alternating insulative and conductive levels. Cavities are formed to extend into the conductive levels along sidewalls of the opening. At least one of the cavities is formed to be shallower than one or more others of the cavities. Charge-blocking dielectric and charge-storage structures are formed within the cavities. Some embodiments include an integrated structure having a stack of alternating insulative and conductive levels. Cavities extend into the conductive levels. At least one of the cavities is shallower than one or more others of the cavities by at least about 2 nanometers. Charge-blocking dielectric is within the cavities. Charge-storage structures are within the cavities.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Gordon A. Haller, Charles H. Dennison, Anish A. Khandekar, Brett D. Lowe, Lining He, Brian Cleereman
  • Publication number: 20190198516
    Abstract: The present disclosure includes memory having a continuous channel, and methods of processing the same. A number of embodiments include forming a vertical stack having memory cells connected in series between a source select gate and a drain select gate, wherein forming the vertical stack includes forming a continuous channel for the source select gate, the memory cells, and the drain select gate, and removing a portion of the continuous channel for the drain select gate such that the continuous channel is thinner for the drain select gate than for the memory cells and the source select gate.
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Inventors: Luan C. Tran, Hongbin Zhu, John D. Hopkins, Yushi Hu
  • Publication number: 20190194449
    Abstract: This invention provides a composite type heavy oil demulsifier and its preparation methods. The demulsifier includes two effective constituents. The constituent I is an amino nonionic dendritic polyether and the constituent II is a dendritic ester acid. The structural formula is presented as Formula I and II, respectively. The demulsifier has good abilities in interfacing between oil and water and reducing viscosity. It has good demulsification performance in breaking crude oil emulsion and is useful in heavy crude oil production and petroleum refining.
    Type: Application
    Filed: December 21, 2017
    Publication date: June 27, 2019
    Inventor: Hongbin Zhu
  • Publication number: 20190131315
    Abstract: Methods for forming a string of memory cells, apparatuses having a string of memory cells, and systems are disclosed. One such method for forming a string of memory cells forms a source material over a substrate. A capping material may be formed over the source material. A select gate material may be formed over the capping material. A plurality of charge storage structures may be formed over the select gate material in a plurality of alternating levels of control gate and insulator materials. A first opening may be formed through the plurality of alternating levels of control gate and insulator materials, the select gate material, and the capping material. A channel material may be formed along the sidewall of the first opening. The channel material has a thickness that is less than a width of the first opening, such that a second opening is formed by the semiconductor channel material.
    Type: Application
    Filed: September 17, 2018
    Publication date: May 2, 2019
    Inventors: Jie Sun, Zhenyu Lu, Roger W. Lindsay, Brian Cleereman, John Hopkins, Hongbin Zhu, Fatam Arzum Simsek-Ege, Prasanna Srinivasan, Purnima Narayanan
  • Patent number: 10269819
    Abstract: Some embodiments include a method of forming vertically-stacked memory cells. An opening is formed through a stack of alternating insulative and conductive levels. Cavities are formed to extend into the conductive levels along sidewalls of the opening. At least one of the cavities is formed to be shallower than one or more others of the cavities. Charge-blocking dielectric and charge-storage structures are formed within the cavities. Some embodiments include an integrated structure having a stack of alternating insulative and conductive levels. Cavities extend into the conductive levels. At least one of the cavities is shallower than one or more others of the cavities by at least about 2 nanometers. Charge-blocking dielectric is within the cavities. Charge-storage structures are within the cavities.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 23, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Gordon A. Haller, Charles H. Dennison, Anish A. Khandekar, Brett D. Lowe, Lining He, Brian Cleereman
  • Patent number: 10242995
    Abstract: Some embodiments include a string of charge storage devices formed along a vertical channel of semiconductor material; a gate region of a drain select gate (SGD) transistor, the gate region at least partially surrounding the vertical channel; a dielectric barrier formed in the gate region; a first isolation layer formed above the gate region and the dielectric barrier; a drain region of the SGD transistor formed above the vertical channel; and a second isolation layer formed above the first isolation layer and the drain region, wherein the second isolation layer includes a conductive contact in electrical contact with the drain region of the SGD transistor. Additional apparatus and methods are disclosed.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: March 26, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Lijing Gou, Gordon Haller, Luan C. Tran
  • Patent number: 10224337
    Abstract: The present disclosure includes memory having a continuous channel, and methods of processing the same. A number of embodiments include forming a vertical stack having memory cells connected in series between a source select gate and a drain select gate, wherein forming the vertical stack includes forming a continuous channel for the source select gate, the memory cells, and the drain select gate, and removing a portion of the continuous channel for the drain select gate such that the continuous channel is thinner for the drain select gate than for the memory cells and the source select gate.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: March 5, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Luan C. Tran, Hongbin Zhu, John D. Hopkins, Yushi Hu
  • Publication number: 20190067216
    Abstract: A semiconductor device includes a semiconductor die comprising integrated circuitry over a substrate of a semiconductor material. A first die ring comprises one or more electrically conductive materials at least partially surrounding the integrated circuitry, the one or more electrically conductive materials comprising an electrically conductive path from proximate a surface of the substrate to an exposed surface of the semiconductor die. A second die ring comprises an electrically conductive material and is disposed around the first die ring. A first electrically conductive interconnect electrically connects the first die ring and to second die ring. Related semiconductor devices and semiconductor dice are disclosed.
    Type: Application
    Filed: August 30, 2017
    Publication date: February 28, 2019
    Inventors: Hongbin Zhu, Qinglin Zeng, Daniel Osterberg, Merri L. Carlson, Gordon A. Haller, Jeremy Adams
  • Publication number: 20190043884
    Abstract: A method of forming a vertical string of memory cells comprises forming a lower stack comprising first alternating tiers comprising vertically-alternating control gate material and insulating material. An upper stack is formed over the lower stack, and comprises second alternating tiers comprising vertically-alternating control gate material and insulating material having an upper opening extending elevationally through multiple of the second alternating tiers. The lower stack comprises a lower opening extending elevationally through multiple of the first alternating tiers and that is occluded by occluding material. At least a portion of the upper opening is elevationally over the occluded lower opening. The occluding material that occludes the lower opening is removed to form an interconnected opening comprising the unoccluded lower opening and the upper opening.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 7, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Charles H. Dennison, Gordon A. Haller, Merri L Carlson, John D. Hopkins, Jia Hui Ng, Jie Sun
  • Publication number: 20180366453
    Abstract: In one embodiment, an apparatus comprises a tier comprising alternating first and second layers, wherein the first layers comprise a first conductive material and the second layers comprise a first dielectric material; a lower metal layer below the tier; a bond pad above the tier, the bond pad coupled to the lower metal layer by a via extending through the tier; and a first channel formed through a portion of the tier, the first channel surrounding the via, the first channel comprising a second dielectric material.
    Type: Application
    Filed: June 16, 2017
    Publication date: December 20, 2018
    Applicant: Intel Corporation
    Inventors: Merri Lyn Carlson, Hongbin Zhu, Gordon A. Haller, James E. Davis, Kevin G. Duesman, James Mathew, Michael P. Violette
  • Patent number: 10134758
    Abstract: 3D NAND memory devices and systems having reduced bit line to drain select gate shorting, including associated methods, are provided and described.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: November 20, 2018
    Assignee: Intel Corporation
    Inventors: Hongbin Zhu, Jun Zhao, Purnima Narayanan, Gordon Haller, Damir Fazil
  • Publication number: 20180315766
    Abstract: Some embodiments include a semiconductor device having a stack structure including a source comprising polysilicon, an etch stop of oxide on the source, a select gate source on the etch stop, a charge storage structure over the select gate source, and a select gate drain over the charge storage structure. The semiconductor device may further include an opening extending vertically into the stack structure to a level adjacent to the source. A channel comprising polysilicon may be formed on a side surface and a bottom surface of the opening. The channel may contact the source at a lower portion of the opening, and may be laterally separated from the charge storage structure by a tunnel oxide. A width of the channel adjacent to the select gate source is greater than a width of the channel adjacent to the select gate drain.
    Type: Application
    Filed: July 5, 2018
    Publication date: November 1, 2018
    Inventors: Hongbin Zhu, Zhenyu Lu, Gordon Haller, Jie Sun, Randy J. Koval, John Hopkins
  • Patent number: 10090318
    Abstract: A method of forming a vertical string of memory cells comprises forming a lower stack comprising first alternating tiers comprising vertically-alternating control gate material and insulating material. An upper stack is formed over the lower stack, and comprises second alternating tiers comprising vertically-alternating control gate material and insulating material having an upper opening extending elevationally through multiple of the second alternating tiers. The lower stack comprises a lower opening extending elevationally through multiple of the first alternating tiers and that is occluded by occluding material. At least a portion of the upper opening is elevationally over the occluded lower opening. The occluding material that occludes the lower opening is removed to form an interconnected opening comprising the unoccluded lower opening and the upper opening.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: October 2, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Charles H. Dennison, Gordon A. Haller, Merri L. Carlson, John D. Hopkins, Jia Hui Ng, Jie Sun
  • Patent number: 10090317
    Abstract: Methods for forming a string of memory cells, apparatuses having a string of memory cells, and systems are disclosed. One such method for forming a string of memory cells forms a source material over a substrate. A capping material may be formed over the source material. A select gate material may be formed over the capping material. A plurality of charge storage structures may be formed over the select gate material in a plurality of alternating levels of control gate and insulator materials. A first opening may be formed through the plurality of alternating levels of control gate and insulator materials, the select gate material, and the capping material. A channel material may be formed along the sidewall of the first opening. The channel material has a thickness that is less than a width of the first opening, such that a second opening is formed by the semiconductor channel material.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: October 2, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Jie Sun, Zhenyu Lu, Roger W. Lindsay, Brian Cleereman, John Hopkins, Hongbin Zhu, Fatma Arzum Simsek-Ege, Prasanna Srinivasan, Purnima Narayanan
  • Patent number: 10038002
    Abstract: Some embodiments include a semiconductor device having a stack structure including a source comprising polysilicon, an etch stop of oxide on the source, a select gate source on the etch stop, a charge storage structure over the select gate source, and a select gate drain over the charge storage structure. The semiconductor device may further include an opening extending vertically into the stack structure to a level adjacent to the source. A channel comprising polysilicon may be formed on a side surface and a bottom surface of the opening. The channel may contact the source at a lower portion of the opening, and may be laterally separated from the charge storage structure by a tunnel oxide. A width of the channel adjacent to the select gate source is greater than a width of the channel adjacent to the select gate drain.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: July 31, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Zhenyu Lu, Gordon Haller, Jie Sun, Randy J. Koval, John Hopkins