Patents by Inventor Hongbin Zhu

Hongbin Zhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10665599
    Abstract: Some embodiments include a method of forming vertically-stacked memory cells. An opening is formed through a stack of alternating insulative and conductive levels. Cavities are formed to extend into the conductive levels along sidewalls of the opening. At least one of the cavities is formed to be shallower than one or more others of the cavities. Charge-blocking dielectric and charge-storage structures are formed within the cavities. Some embodiments include an integrated structure having a stack of alternating insulative and conductive levels. Cavities extend into the conductive levels. At least one of the cavities is shallower than one or more others of the cavities by at least about 2 nanometers. Charge-blocking dielectric is within the cavities. Charge-storage structures are within the cavities.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: May 26, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Gordon A. Haller, Charles H. Dennison, Anish A. Khandekar, Brett D. Lowe, Lining He, Brian Cleereman
  • Publication number: 20200161322
    Abstract: Embodiments of three-dimensional (3D) memory devices having through array contacts (TACs) and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A dielectric stack including a plurality of dielectric/sacrificial layer pairs is formed on a substrate. A channel structure extending vertically through the dielectric stack is formed. A first opening extending vertically through the dielectric stack is formed. A spacer is formed on a sidewall of the first opening. A TAC extending vertically through the dielectric stack is formed by depositing a conductor layer in contact with the spacer in the first opening. A slit extending vertically through the dielectric stack is formed after forming the TAC. A memory stack including a plurality of conductor/dielectric layer pairs is formed on the substrate by replacing, through the slit, the sacrificial layers in the dielectric/sacrificial layer pairs with a plurality of conductor layers.
    Type: Application
    Filed: January 17, 2020
    Publication date: May 21, 2020
    Inventors: Mei Lan Guo, Yushi Hu, Ji Xia, Hongbin Zhu
  • Publication number: 20200161131
    Abstract: A forming method of an epitaxial layer, a forming method of a 3D NAND memory and an annealing apparatus are provided. In the forming method of the epitaxial layer, a first annealing process is performed for eliminating a stress generated in a stacked structure. When performing the first annealing process, a silicon-containing mixture is formed on a sidewall and a bottom surface of a trench. Thus, after performing the first annealing process, a second annealing process is performed for removing the silicon-containing mixture disposed at the sidewall and the bottom surface of the trench, such that when subsequently forming the epitaxial layer, a growth interface of the epitaxial layer is a pure substrate material interface, so as to prevent from be formed a void defect in the epitaxial layer formed in the trench.
    Type: Application
    Filed: March 13, 2019
    Publication date: May 21, 2020
    Inventors: Haifeng GUO, Xiaojin WANG, Hongbin ZHU, Lin LAI, Teng CHENG, Lihong XIAO
  • Publication number: 20200161321
    Abstract: Embodiments of three-dimensional (3D) memory devices having through array contacts (TACs) and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A dielectric stack including a plurality of dielectric/sacrificial layer pairs is formed on a substrate. A channel structure extending vertically through the dielectric stack is formed. A first opening extending vertically through the dielectric stack is formed. A spacer is formed on a sidewall of the first opening. A TAC extending vertically through the dielectric stack is formed by depositing a conductor layer in contact with the spacer in the first opening. A slit extending vertically through the dielectric stack is formed after forming the TAC. A memory stack including a plurality of conductor/dielectric layer pairs is formed on the substrate by replacing, through the slit, the sacrificial layers in the dielectric/sacrificial layer pairs with a plurality of conductor layers.
    Type: Application
    Filed: January 17, 2020
    Publication date: May 21, 2020
    Inventors: Mei Lan Guo, Yushi Hu, Ji Xia, Hongbin Zhu
  • Publication number: 20200152658
    Abstract: Some embodiments include a memory array which has a stack of alternating first and second levels. Channel material pillars extend through the stack, and vertically-stacked memory cell strings are along the channel material pillars. A common source is under the stack and electrically coupled to the channel material pillars. The common source has conductive protective material over and directly against metal silicide, with the conductive protective material being a composition other than metal silicide. Some embodiments include methods of fabricating integrated structures.
    Type: Application
    Filed: January 9, 2020
    Publication date: May 14, 2020
    Inventors: John M. Meldrim, Yushi Hu, Rita J. Klein, John D. Hopkins, Hongbin Zhu, Gordon A. Haller, Luan C. Tran
  • Patent number: 10651315
    Abstract: A method to fabricate a three dimensional memory structure may include creating a stack of layers including a conductive source layer, a first insulating layer, a select gate source layer, and a second insulating layer, and an array stack. A hole through the stack of layers may then be created using the conductive source layer as a stop-etch layer. The source material may have an etch rate no faster than 33% as fast as an etch rate of the insulating material for the etch process used to create the hole. A pillar of semiconductor material may then fill the hole, so that the pillar of semiconductor material is in electrical contact with the conductive source layer.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: May 12, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Zhenyu Lu, Hongbin Zhu, Gordon A Haller, Roger W. Lindsay, Andrew Bicksler, Brian J. Cleereman, Minsoo Lee
  • Publication number: 20200119042
    Abstract: Embodiments of methods for forming channel holes in 3D memory devices using a nonconformal sacrificial layer are disclosed. In an example, a dielectric stack including interleaved first dielectric layers and second dielectric layers is formed on a substrate. An opening extending vertically through the dielectric stack is formed. A nonconformal sacrificial layer is formed along a sidewall of the opening, such that a variation of a diameter of the opening decreases. The nonconformal sacrificial layer and part of the dielectric stack abutting the nonconformal sacrificial layer are removed. A channel structure is formed in the opening after removing the nonconformal sacrificial layer and part of the dielectric stack.
    Type: Application
    Filed: November 20, 2018
    Publication date: April 16, 2020
    Inventors: Baoyou Chen, Weihua Cheng, Hai Hui Huang, Zhuqing Huang, Guanping Wu, Hongbin Zhu, Yu Qi Wang
  • Patent number: 10622374
    Abstract: A method of forming a vertical string of memory cells comprises forming a lower stack comprising first alternating tiers comprising vertically-alternating control gate material and insulating material. An upper stack is formed over the lower stack, and comprises second alternating tiers comprising vertically-alternating control gate material and insulating material having an upper opening extending elevationally through multiple of the second alternating tiers. The lower stack comprises a lower opening extending elevationally through multiple of the first alternating tiers and that is occluded by occluding material. At least a portion of the upper opening is elevationally over the occluded lower opening. The occluding material that occludes the lower opening is removed to form an interconnected opening comprising the unoccluded lower opening and the upper opening.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: April 14, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Charles H. Dennison, Gordon A. Haller, Merri L. Carlson, John D. Hopkins, Jia Hui Ng, Jie Sun
  • Patent number: 10608004
    Abstract: Some embodiments include a semiconductor device having a stack structure including a source comprising polysilicon, an etch stop of oxide on the source, a select gate source on the etch stop, a charge storage structure over the select gate source, and a select gate drain over the charge storage structure. The semiconductor device may further include an opening extending vertically into the stack structure to a level adjacent to the source. A channel comprising polysilicon may be formed on a side surface and a bottom surface of the opening. The channel may contact the source at a lower portion of the opening, and may be laterally separated from the charge storage structure by a tunnel oxide. A width of the channel adjacent to the select gate source is greater than a width of the channel adjacent to the select gate drain.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: March 31, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Zhenyu Lu, Gordon Haller, Jie Sun, Randy J. Koval, John Hopkins
  • Patent number: 10597527
    Abstract: This invention provides a composite type heavy oil demulsifier and its preparation methods. The demulsifier includes two effective constituents. The constituent I is an amino nonionic dendritic polyether and the constituent II is a dendritic ester acid. The structural formula is presented as Formula I and II, respectively. The demulsifier has good abilities in interfacing between oil and water and reducing viscosity. It has good demulsification performance in breaking crude oil emulsion and is useful in heavy crude oil production and petroleum refining.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: March 24, 2020
    Assignee: ZHU, HONGBIN
    Inventor: Hongbin Zhu
  • Publication number: 20200066739
    Abstract: Embodiments of three-dimensional (3D) memory devices having through array contacts (TACs) and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A dielectric stack including a plurality of dielectric/sacrificial layer pairs is formed on a substrate. A channel structure extending vertically through the dielectric stack is formed. A first opening extending vertically through the dielectric stack is formed. A spacer is formed on a sidewall of the first opening. A TAC extending vertically through the dielectric stack is formed by depositing a conductor layer in contact with the spacer in the first opening. A slit extending vertically through the dielectric stack is formed after forming the TAC. A memory stack including a plurality of conductor/dielectric layer pairs is formed on the substrate by replacing, through the slit, the sacrificial layers in the dielectric/sacrificial layer pairs with a plurality of conductor layers.
    Type: Application
    Filed: October 1, 2018
    Publication date: February 27, 2020
    Inventors: Mei Lan Guo, Yushi Hu, Ji Xia, Hongbin Zhu
  • Patent number: 10566336
    Abstract: Embodiments of three-dimensional (3D) memory devices having through array contacts (TACs) and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A dielectric stack including a plurality of dielectric/sacrificial layer pairs is formed on a substrate. A channel structure extending vertically through the dielectric stack is formed. A first opening extending vertically through the dielectric stack is formed. A spacer is formed on a sidewall of the first opening. A TAC extending vertically through the dielectric stack is formed by depositing a conductor layer in contact with the spacer in the first opening. A slit extending vertically through the dielectric stack is formed after forming the TAC. A memory stack including a plurality of conductor/dielectric layer pairs is formed on the substrate by replacing, through the slit, the sacrificial layers in the dielectric/sacrificial layer pairs with a plurality of conductor layers.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: February 18, 2020
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Mei Lan Guo, Yushi Hu, Ji Xia, Hongbin Zhu
  • Patent number: 10553611
    Abstract: Some embodiments include a memory array which has a stack of alternating first and second levels. Channel material pillars extend through the stack, and vertically-stacked memory cell strings are along the channel material pillars. A common source is under the stack and electrically coupled to the channel material pillars. The common source has conductive protective material over and directly against metal silicide, with the conductive protective material being a composition other than metal silicide. Some embodiments include methods of fabricating integrated structures.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: February 4, 2020
    Assignee: Micron Technology, Inc.
    Inventors: John M. Meldrim, Yushi Hu, Rita J. Klein, John D. Hopkins, Hongbin Zhu, Gordon A. Haller, Luan C. Tran
  • Publication number: 20200013801
    Abstract: A method used in forming a vertical string of memory cells and a conductive via comprises forming a first lower opening and a second lower opening into a lower material. A first material is formed within the first and second lower openings. An upper material is formed above the lower material and above the first material in the first and second lower openings. A first upper opening is formed through the upper material to the first material in the first lower opening. At least a majority of the first material is removed from the first lower opening through the first upper opening and channel material is formed within the first lower and first upper openings for the vertical string of memory cells being formed. After forming the channel material, a second upper opening is formed through the upper material to the first material in the second lower opening. Conductive material of the conductive via is formed within the second upper opening. Structure embodiments independent of method of formation are disclosed.
    Type: Application
    Filed: September 17, 2019
    Publication date: January 9, 2020
    Applicant: Micron Technology, Inc.
    Inventors: HONGBIN ZHU, GURTEJ S. SANDHU, KUNAL R. PAREKH
  • Publication number: 20200006284
    Abstract: The present invention relates to a semiconductor structure and method of forming the same. The semiconductor structure includes a first substrate, a first adhesive/bonding stack on the surface of first substrate, wherein the first adhesive/bonding stack includes at least one first adhesive layer and at least one first bonding layer. The material of first bonding layer includes dielectrics such as silicon, nitrogen and carbon, the material of first adhesive layer includes dielectrics such as silicon and nitrogen, and the first adhesive/bonding stack of semiconductor structure is provided with higher bonding force in bonding process.
    Type: Application
    Filed: April 8, 2019
    Publication date: January 2, 2020
    Inventors: Jun CHEN, Ziqun HUA, Siping HU, Jiawen WANG, Tao WANG, Jifeng ZHU, Taotao DING, Xinsheng WANG, Hongbin ZHU, Weihua CHENG, Shining YANG
  • Publication number: 20200006278
    Abstract: A semiconductor structure and a method of forming the same are provided. The semiconductor structure includes a first substrate; a first adhesive layer disposed on the surface of the first substrate; a first buffer layer disposed on the surface of the first adhesive layer; and a first bonding layer disposed on the surface of the first buffer layer, wherein the densities of the first adhesive layer and the first buffer layer are greater than that of the first bonding layer. The first adhesive layer of the semiconductor structure has higher adhesion with the first substrate and the first buffer layer, and the first buffer layer and the first bonding layer exhibit higher adhesion, which are beneficial to improve the performance of the semiconductor structure.
    Type: Application
    Filed: April 7, 2019
    Publication date: January 2, 2020
    Inventors: Xinsheng WANG, Li ZHANG, Gaosheng ZHANG, Xianjin WAN, Ziqun HUA, Jiawen WANG, Taotao DING, Hongbin ZHU, Weihua CHENG, Shining YANG
  • Publication number: 20200006285
    Abstract: The present invention relates to a semiconductor structure and a manufacturing method thereof. The semiconductor structure includes a first substrate, and a bonding layer located on a surface of the first substrate. The material of the first bonding layer is a dielectric material containing element carbon (C). C atomic concentration of a surface layer of the first bonding layer away from the first substrate is higher than or equal to 35%. The first bonding layer of the semiconductor structure may be used to enhance bonding strength during bonding.
    Type: Application
    Filed: April 9, 2019
    Publication date: January 2, 2020
    Inventors: Xinsheng WANG, Li ZHANG, Gaosheng ZHANG, Xianjin WAN, Ziqun HUA, Jiawen WANG, Taotao DING, Hongbin ZHU, Weihua CHENG, Shining YANG
  • Publication number: 20200006275
    Abstract: The present invention relates to a semiconductor structure and method of forming the same. The semiconductor structure includes a first substrate, a first bonding layer on the surface of first substrate, the material of first bonding layer includes dielectrics such as Si, N and C, and the first bonding layer of semiconductor structure is provided with higher bonding force in wafer bonding.
    Type: Application
    Filed: April 8, 2019
    Publication date: January 2, 2020
    Inventors: Jun CHEN, Ziqun HUA, Siping HU, Jiawen WANG, Tao WANG, Jifeng ZHU, Taotao DING, Xinsheng WANG, Hongbin ZHU, Weihua CHENG, Shining YANG
  • Publication number: 20200006277
    Abstract: The present invention relates to a semiconductor structure and a manufacturing method thereof. The semiconductor structure includes: a first substrate; a first adhesive layer disposed on a surface of the first substrate; and a first bonding layer disposed on a surface of the first adhesive layer. A density of the first adhesive layer is greater than a density of the first bonding layer. The first adhesive layer of the semiconductor structure has higher adhesion with the first substrate and first bonding layer, such that it is advantageous to improve a performance of the semiconductor structure.
    Type: Application
    Filed: April 7, 2019
    Publication date: January 2, 2020
    Inventors: Xinsheng WANG, Li ZHANG, Gaosheng ZHANG, Xianjin WAN, Ziqun HUA, Jiawen WANG, Taotao DING, Hongbin ZHU, Weihua CHENG, Shining YANG
  • Patent number: 10504859
    Abstract: Guard ring technology is disclosed. In one example, an electronic component guard ring can include a barrier having a first barrier portion and a second barrier portion oriented end to end to block ion diffusion and crack propagation in an electronic component. The guard ring can also include an opening in the barrier between the first and second barrier portions extending between a first side and a second side of the barrier. Associated systems and methods are also disclosed.
    Type: Grant
    Filed: October 1, 2016
    Date of Patent: December 10, 2019
    Assignee: Intel Corporation
    Inventors: Hongbin Zhu, Minsoo Lee, Gordon A. Haller, Philip J. Ireland