Patents by Inventor Hongyu Yu

Hongyu Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160097641
    Abstract: A system and method for using a sensor includes a first anode and cathode pair having a first non-zero voltage therebetween and an ionic liquid contacting the first anode and cathode pair. An output is provided that communicates a motion sense signal corresponding to a motion or pressure of the sensor in at least one direction that causes a change in a first ionic concentration gradient between the first anode and cathode pair.
    Type: Application
    Filed: October 2, 2015
    Publication date: April 7, 2016
    Inventors: Lenore L. Dai, Hongyu Yu, Miranda Ngan, Mengbing Liang, Hai Huang, Denzil Frost, Stella Nickerson
  • Patent number: 9293509
    Abstract: The present invention discloses a small-grain three-dimensional memory (3D-MSG). Each of its memory cells comprises a thin-film diode with critical dimension no larger than 40 nm. The thin-film diode comprises at least a small-grain material, whose grain size G is substantially smaller than the diode size D. The small-grain material is preferably a nano-crystalline material or an amorphous material. The critical dimension f of the small-grain diode is smaller than the critical dimension F of the single-crystalline transistor.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: March 22, 2016
    Assignees: HangZhou HaiCun Information Technology Co., Ltd.
    Inventors: Guobiao Zhang, Bin Yu, HongYu Yu, Jin He, JinFeng Kang, ZhiWei Liu
  • Publication number: 20150342050
    Abstract: An origami enabled manufacturing system. The system uses origami design principles to create functional materials, structures, devices and/or systems having an adjustable size and/or shape. An operational device can be coupled to a planar substrate shaped and sized to correspond to a desired origami shape of an origami pattern. A plurality of planar substrates can be coupled together by a plurality of connection members that corresponds to one or more crease of the origami pattern. An array of planar substrates can be formed that convert into a three dimensional structure with origami shape. The resulting three-dimensional structure provides smaller projection area, higher portability and deformability.
    Type: Application
    Filed: January 15, 2014
    Publication date: November 26, 2015
    Inventors: Hanqing Jiang, Hongyu Yu, Goran Konjevod, Yong Xu
  • Publication number: 20150302772
    Abstract: A dynamic and refreshable three-dimensional tactile display uses stimulus sensitive hydrogel blocks as pixels to create a touch surface with elevations from a two-dimensional optical image or from stored data. The movable three-dimensional tactiles are powerful in teaching Science, Technology, Engineering, and Mathematics (STEM) materials to visually impaired and blind students.
    Type: Application
    Filed: November 20, 2013
    Publication date: October 22, 2015
    Inventors: Hongyu Yu, Rogier Windhorst, Debra Baluch, Hanqing Jiang, Lenore Dai
  • Publication number: 20150214277
    Abstract: The present invention discloses a small-grain three-dimensional memory (3D-MSG). Each of its memory cells comprises a thin-film diode with critical dimension no larger than 40 nm. The thin-film diode comprises at least a small-grain material, whose grain size G is substantially smaller than the diode size D. The small-grain material is preferably a nano-crystalline material or an amorphous material. The critical dimension f of the small-grain diode is smaller than the critical dimension F of the single-crystalline transistor.
    Type: Application
    Filed: February 5, 2015
    Publication date: July 30, 2015
    Applicant: HangZhou HaiCun Information Technology Co., Ltd.
    Inventors: Guobiao ZHANG, Bin YU, HongYu YU, Jin HE, JinFeng KANG, ZhiWei LIU
  • Patent number: 8733149
    Abstract: The present invention relates generally to the detection of alcohol. The present invention relates more particularly to the film bulk acoustic wave resonator-based devices, and their use in the sensing of ethanol and/or acetone. One aspect of the invention is a method for detecting ethanol, acetone or both in a gaseous sample including: providing a film bulk acoustic wave resonator having a zinc oxide piezoelectric layer; exposing the film bulk acoustic wave resonator to the gaseous sample; determining the resonant frequency of the film bulk acoustic wave resonator; and determining the concentration of ethanol, the concentration of acetone, or both in the gaseous sample using the resonant frequency of the film bulk acoustic wave resonator.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: May 27, 2014
    Assignee: Arizona Board of Regents, a body corporate of the State of Arizona, Acting for and on Behalf of Arizona State University
    Inventors: Hongyu Yu, Xiaotun Qiu
  • Patent number: 8704191
    Abstract: The present invention relates generally to the detection of high energy radiation. The present invention relates more particularly to the film bulk acoustic wave resonator-based devices, and their use in the detection of high energy radiation. One aspect of the invention is a method for detecting high energy radiation, the method comprising providing a film bulk acoustic wave resonator having a zinc oxide piezoelectric layer in substantial contact with a dielectric layer; exposing the film bulk acoustic wave resonator to the high energy radiation; determining the resonant frequency of the film bulk acoustic wave resonator; and determining the dose of high energy radiation using the resonant frequency of the film bulk acoustic wave resonator.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: April 22, 2014
    Assignee: Arizona Board of Regents, a Body Corporate of the State of Arizona, Acting for and on Behalf of Arizona State University
    Inventors: Hongyu Yu, Jonathon Keith Oiler, Hugh James Barnaby
  • Patent number: 8524554
    Abstract: A dual work function semiconductor device and method for fabricating the same are disclosed. In one aspect, a device includes a first and second transistor on a first and second substrate region. The first and second transistors include a first gate stack having a first work function and a second gate stack having a second work function respectively. The first and second gate stack each include a host dielectric, a gate electrode comprising a metal layer, and a second dielectric capping layer therebetween. The second gate stack further has a first dielectric capping layer between the host dielectric and metal layer. The metal layer is selected to determine the first work function. The first dielectric capping layer is selected to determine the second work function.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: September 3, 2013
    Assignees: IMEC, Samsung Electronics Co., Ltd., Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hag-Ju Cho, Anabela Veloso, HongYu Yu, Stefan Kubicek, Shou-Zen Chang
  • Publication number: 20120326050
    Abstract: The present invention relates generally to the detection of high energy radiation. The present invention relates more particularly to the film bulk acoustic wave resonator-based devices, and their use in the detection of high energy radiation. One aspect of the invention is a method for detecting high energy radiation, the method comprising providing a film bulk acoustic wave resonator having a zinc oxide piezoelectric layer in substantial contact with a dielectric layer; exposing the film bulk acoustic wave resonator to the high energy radiation; determining the resonant frequency of the film bulk acoustic wave resonator; and determining the dose of high energy radiation using the resonant frequency of the film bulk acoustic wave resonator.
    Type: Application
    Filed: January 20, 2011
    Publication date: December 27, 2012
    Applicant: Arizona Board of Regents, A Body Corporate of the State of Arizona Acting for and on Behalf ASU
    Inventors: Hongyu Yu, Jonathon Keith Oiler, Hugh James Barnaby
  • Publication number: 20120297859
    Abstract: The present invention relates generally to the detection of alcohol. The present invention relates more particularly to the film bulk acoustic wave resonator-based devices, and their use in the sensing of ethanol and/or acetone. One aspect of the invention is a method for detecting ethanol, acetone or both in a gaseous sample including: providing a film bulk acoustic wave resonator having a zinc oxide piezoelectric layer; exposing the film bulk acoustic wave resonator to the gaseous sample; determining the resonant frequency of the film bulk acoustic wave resonator; and determining the concentration of ethanol, the concentration of acetone, or both in the gaseous sample using the resonant frequency of the film bulk acoustic wave resonator.
    Type: Application
    Filed: January 20, 2011
    Publication date: November 29, 2012
    Applicant: Arizona Board of Regents, a body Corporate of the States of Arizona acting for and on behalf of Ariz
    Inventors: Hongyu Yu, Xiaotun Qiu
  • Patent number: 8313993
    Abstract: A dual work function semiconductor device and method for fabricating the same are disclosed. In one aspect, a device includes a first and second transistor on a first and second substrate region. The first and second transistors include a first gate stack having a first work function and a second gate stack having a second work function respectively. The first and second gate stack each include a host dielectric, a gate electrode comprising a metal layer, and a second dielectric capping layer therebetween. The second gate stack further has a first dielectric capping layer between the host dielectric and metal layer. The metal layer is selected to determine the first work function. The first dielectric capping layer is selected to determine the second work function.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: November 20, 2012
    Assignees: IMEC, Samsung Electronics Co., Ltd., Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hag-Ju Cho, Anabela Veloso, HongYu Yu, Stefan Kubicek, Shou-Zen Chang
  • Publication number: 20120215121
    Abstract: A micromachined sensor for measuring vascular parameters, such as fluid shear stress, includes a substrate having a front-side surface, and a backside surface opposite the front-side surface. The sensor includes a diaphragm overlying a cavity etched within the substrate, and a heat sensing element disposed on the front-side surface of the substrate and on top of the cavity and the diaphragm. The heat sensing element is electrically couplable to electrode leads formed on the backside surface of the substrate. The sensor includes an electronic system connected to the backside surface and configured to measure a change in heat convection from the sensing element to surrounding fluid when the sensing element is heated by applying an electric current thereto, and further configured to derive from the change in heat convection vascular parameters such as the shear stress of fluid flowing past the sensing element.
    Type: Application
    Filed: May 1, 2012
    Publication date: August 23, 2012
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Tzung K. Hsiai, Gopikrishnan Soundararajan, Eun Sok Kim, Hongyu Yu, Mahsa Rouhanizadeh, Christina Tiantian Lin
  • Patent number: 8216434
    Abstract: A micromachined sensor for measuring vascular parameters, such as fluid shear stress, includes a substrate having a front-side surface, and a backside surface opposite the front-side surface. The sensor includes a diaphragm overlying a cavity etched within the substrate, and a heat sensing element disposed on the front-side surface of the substrate and on top of the cavity and the diaphragm. The heat sensing element is electrically couplable to electrode leads formed on the backside surface of the substrate. The sensor includes an electronic system connected to the backside surface and configured to measure a change in heat convection from the sensing element to surrounding fluid when the sensing element is heated by applying an electric current thereto, and further configured to derive from the change in heat convection vascular parameters such as the shear stress of fluid flowing past the sensing element.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: July 10, 2012
    Assignee: University of Southern California
    Inventors: Tzung K. Hsiai, Gopikrishnan Soundararajan, Eun Sok Kim, Hongyu Yu, Mahsa Rouhanizadeh, Christina Tiantian Lin
  • Patent number: 8119511
    Abstract: A non-volatile memory device having a control gate on top of the second dielectric (interpoly or blocking dielectric), at least a bottom layer of the control gate in contact with the second dielectric being constructed in a material having a predefined high work-function and showing a tendency to reduce its work-function when in contact with a group of certain high-k materials after full device fabrication. At least a top layer of the second dielectric, separating the bottom layer of the control gate from the rest of the second dielectric, is constructed in a predetermined high-k material, chosen outside the group for avoiding a reduction in the work-function of the material of the bottom layer of the control gate. In the manufacturing method, the top layer is created in the second dielectric before applying the control gate.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: February 21, 2012
    Assignee: IMEC
    Inventors: Bogdan Govoreanu, HongYu Yu, Hag-Ju Cho
  • Publication number: 20110256682
    Abstract: A method is provided for fabricating a semiconductor device. A semiconductor substrate is provided. A first high-k dielectric layer is formed on the semiconductor substrate. A first treatment is performed on the high-k dielectric layer. In an embodiment, the treatment includes a UV radiation in the presence of O2 and/or O3. A second high-k dielectric layer is formed on the treated first high-k dielectric layer. A second treatment is performed on the second high-k dielectric layer. In an embodiment, the high-k dielectric layer forms a gate dielectric layer of a field effect transistor.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 20, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Xiong-Fei Yu, Wei-Yang Lee, Da-Yuan Lee, Kuang-Yuan Hsu, Yuan-Hung Chiu, Hun-Jan Tao, Hongyu Yu, Wu Ling
  • Patent number: 8012827
    Abstract: A method for manufacturing a dual workfunction semiconductor device and the device made thereof are disclosed. In one aspect, the method includes manufacturing a first transistor in a first region and a second transistor in a second region of a substrate, the first transistor including a first gate stack, the first gate stack having a first gate dielectric capping layer and a first metal gate electrode layer. The second gate stack is similar to the first gate stack. The method includes applying a first thermal budget to the first gate dielectric capping layer and a second thermal budget to the second gate dielectric capping material to tune the workfunction of the first and second gate stack, the first thermal budget being smaller than the second thermal budget such that after the thermal treatment the first and the second gate stack have different work functions.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: September 6, 2011
    Assignee: IMEC
    Inventors: HongYu Yu, Shou-Zen Chang, Thomas Y. Hoffmann, Philippe Absil
  • Patent number: 7989898
    Abstract: A dual workfunction semiconductor device and a device made thereof is disclosed. In one aspect, the device includes a first gate stack in a first region and a second gate stack in a second region. The first gate stack has a first effective workfunction, and the second gate stack has a second effective workfunction different from the first effective workfunction. The first gate stack includes a first gate dielectric capping layer, a gate dielectric host layer, a first metal gate electrode layer, a barrier metal gate electrode, a second gate dielectric capping layer, and a second metal gate electrode. The second gate stack includes a gate dielectric host layer, a first metal gate electrode, a second gate dielectric capping layer, and a second metal gate electrode.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: August 2, 2011
    Assignees: IMEC, Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shou-Zen Chang, HongYu Yu
  • Publication number: 20110183509
    Abstract: A non-volatile memory device having a control gate on top of the second dielectric (interpoly or blocking dielectric), at least a bottom layer of the control gate in contact with the second dielectric being constructed in a material having a predefined high work-function and showing a tendency to reduce its work-function when in contact with a group of certain high-k materials after full device fabrication. At least a top layer of the second dielectric, separating the bottom layer of the control gate from the rest of the second dielectric, is constructed in a predetermined high-k material, chosen outside the group for avoiding a reduction in the work-function of the material of the bottom layer of the control gate. In the manufacturing method, the top layer is created in the second dielectric before applying the control gate.
    Type: Application
    Filed: April 5, 2011
    Publication date: July 28, 2011
    Applicants: Interuniversitair Microelektronica Centrum vzw (IMEC), Samsung Electronics Co. Ltd.
    Inventors: Bogdan Govoreanu, HongYu Yu, Hag-Ju Cho
  • Patent number: 7759748
    Abstract: A semiconductor device is disclosed that comprises a fully silicided electrode formed of an alloy of a semiconductor material and a metal, a workfunction modulating element for modulating a workfunction of the alloy, and a dielectric in contact with the fully silicided electrode. At least a part of the dielectric which is in direct contact with the fully silicided electrode comprises a stopping material for substantially preventing the workfunction modulating element from implantation into and/or diffusing towards the dielectric. A method for forming such a semiconductor device is also disclosed.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: July 20, 2010
    Assignees: IMEC, Taiwan Semiconductor Manufacturing Company Ltd. (TSMC)
    Inventors: HongYu Yu, Shou-Zen Chang, Jorge Adrian Kittl, Anne Lauwers, Anabela Veloso
  • Patent number: 7719170
    Abstract: Techniques, apparatus and systems that use an acoustic transducer with a Fresnel lens to focus an acoustic wave for various applications, including acoustic droplet ejectors.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: May 18, 2010
    Assignee: University of Southern California
    Inventors: Eun Sok Kim, Hongyu Yu, Chuang-Yuan Lee