Patents by Inventor Hongyu Yu

Hongyu Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090283835
    Abstract: A method for manufacturing a dual workfunction semiconductor device and the device made thereof are disclosed. In one aspect, the method includes manufacturing a first transistor in a first region and a second transistor in a second region of a substrate, the first transistor including a first gate stack, the first gate stack having a first gate dielectric capping layer and a first metal gate electrode layer. The second gate stack is similar to the first gate stack. The method includes applying a first thermal budget to the first gate dielectric capping layer and a second thermal budget to the second gate dielectric capping material to tune the workfunction of the first and second gate stack, the first thermal budget being smaller than the second thermal budget such that after the thermal treatment the first and the second gate stack have different work functions.
    Type: Application
    Filed: April 22, 2009
    Publication date: November 19, 2009
    Applicants: Interuniversitair Microelektronica Centrum vzw (IMEC), Taiwan Semiconductor Manufacturing Company, Ltd. (TSMC)
    Inventors: HongYu Yu, Shou-Zen Chang, Thomas Y. Hoffmann, Philippe Absil
  • Publication number: 20090261424
    Abstract: A dual workfunction semiconductor device and a device made thereof is disclosed. In one aspect, the device includes a first gate stack in a first region and a second gate stack in a second region. The first gate stack has a first effective workfunction, and the second gate stack has a second effective workfunction different from the first effective workfunction. The first gate stack includes a first gate dielectric capping layer, a gate dielectric host layer, a first metal gate electrode layer, a barrier metal gate electrode, a second gate dielectric capping layer, and a second metal gate electrode. The second gate stack includes a gate dielectric host layer, a first metal gate electrode, a second gate dielectric capping layer, and a second metal gate electrode.
    Type: Application
    Filed: April 22, 2009
    Publication date: October 22, 2009
    Applicants: Interuniversitair Microelektronica Centrum vzw (IMEC), Taiwan Semiconductor Manufacturing Company, Ltd. (TSMC)
    Inventors: Shou-Zen Chang, HongYu Yu
  • Publication number: 20090206417
    Abstract: A method for manufacturing a dual work function semiconductor device is disclosed. In one aspect, a method starts by forming a host dielectric layer over a first and second region of a substrate. A first dielectric capping layer is formed overlying the host dielectric layer on the first and second region and later selectively removed to expose an underlying layer on the first region. A Hf-based dielectric capping layer is formed overlying the underlying layer on the first region and the first dielectric capping layer on the second region. The Hf-based dielectric capping layer is selected to have a healing effect on the exposed surface of the underlying layer on the first region. A control electrode is formed overlaying the Hf-based dielectric capping layer on the first region and on the second region.
    Type: Application
    Filed: February 19, 2009
    Publication date: August 20, 2009
    Applicant: Interuniversitair Microelektornica Centrum vzw (IMEC)
    Inventors: Shou-Zen Chang, HongYu Yu, Thomas Y. Hoffman
  • Publication number: 20090184376
    Abstract: A dual work function semiconductor device and method for fabricating the same are disclosed. In one aspect, a device includes a first and second transistor on a first and second substrate region. The first and second transistors include a first gate stack having a first work function and a second gate stack having a second work function respectively. The first and second gate stack each include a host dielectric, a gate electrode comprising a metal layer, and a second dielectric capping layer therebetween. The second gate stack further has a first dielectric capping layer between the host dielectric and metal layer. The metal layer is selected to determine the first work function. The first dielectric capping layer is selected to determine the second work function.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 23, 2009
    Applicants: Interuniversitair Microelektronica Centrum vzw (IMEC), Samsung Electronics Co., Ltd., Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hag-Ju Cho, Anabela Veloso, HongYu Yu, Stefan Kubicek, Shou-Zen Chang
  • Publication number: 20090134453
    Abstract: A non-volatile memory device having a control gate on top of the second dielectric (interpoly or blocking dielectric), at least a bottom layer of the control gate in contact with the second dielectric being constructed in a material having a predefined high work-function and showing a tendency to reduce its work-function when in contact with a group of certain high-k materials after full device fabrication. At least a top layer of the second dielectric, separating the bottom layer of the control gate from the rest of the second dielectric, is constructed in a predetermined high-k material, chosen outside the group for avoiding a reduction in the work-function of the material of the bottom layer of the control gate. In the manufacturing method, the top layer is created in the second dielectric before applying the control gate.
    Type: Application
    Filed: November 21, 2008
    Publication date: May 28, 2009
    Applicants: Interuniversitair Microelektronica Centrum vzw (IMEC), Samsung Electronics Co. Ltd.
    Inventors: Bogdan Govoreanu, HongYu Yu, Hag-ju Cho
  • Publication number: 20090134469
    Abstract: A method of manufacturing a dual work function semiconductor device is disclosed. In one aspect, the method comprises providing a first metal layer over a first electrode in a first region, and at least a first work function tuning element. The method further comprises providing a second metal layer of a second metal in a second region at least over a second electrode. The method further comprises performing a first silicidation of the first electrode and a second silicidation of the second electrode simultaneously.
    Type: Application
    Filed: November 28, 2007
    Publication date: May 28, 2009
    Applicants: Interuniversitair Microelektronica Centrum (IMEC) vzw, Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shou-Zen Chang, HongYu Yu
  • Patent number: 7504329
    Abstract: Low work function metals for use as gate electrode in nMOS devices are provided. The low work function metals include alloys of lanthanide(s), metal and semiconductor. In particular, an alloy of nickel-ytterbium (NiYb) is used to fully silicide (FUSI) a silicon gate. The resulting nickel-ytterbium-silicon gate electrode has a work function of about 4.22 eV.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: March 17, 2009
    Assignees: Interuniversitair Microelektronica Centrum (IMEC), National University of Singapore (NUS), Texas Instruments Incorporated
    Inventors: HongYu Yu, Chen JingDe, Li Mingfu, Dim-Lee Kwong, Serge Biesemans, Jorge Adrian Kittl
  • Publication number: 20090050982
    Abstract: A new MOSFET device is described comprising a metal gate electrode, a gate dielectric and an interfacial layer. The interfacial layer comprises a lanthanum hafnium oxide material for modulating the effective work function of the metal gate. The gate dielectric material in contact with the interfacial layer is different that the interfacial layer material. A method for its manufacture is also provided and its applications.
    Type: Application
    Filed: May 29, 2007
    Publication date: February 26, 2009
    Applicants: Interuniversitair Microelektronica Centrum (IMEC), National University of Singapore (NUS), Infineon Technologies AG
    Inventors: Luigi Pantisano, Tom Schram, Stefan De Gendt, Amal Akheyar, XinPeng Wang, Mingfu Li, HongYu Yu
  • Publication number: 20080302675
    Abstract: A flexible, polymer-based biosensor deployable into the arterial system which can assess shear stress in the arterial geometry in the presence of time-varying component of blood flow. Also, a method of fabricating a biosensor which may be used for in vivo procedures, involving the sequential depositing onto a substrate of a silicon dioxide layer, a metal heating element on the silicon dioxide layer, and a biocompatible polymer on the heating element, followed by etching the polymer layer to provide holes to allow for electrode contact with the heating element. A second metal layer is then deposited to form electrodes, followed by a second biocompatible polymer layer to form the device structure and removing the fabricated biosensor from the substrate by etching the substrate. In addition, a method of determining intravascular shear stress by measuring the temperature, flow rate and pressure of a bodily fluid with a biocompatible biosensor is disclosed.
    Type: Application
    Filed: June 6, 2008
    Publication date: December 11, 2008
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Tzung K. Hsiai, Hongyu Yu, Eun Sok Kim, Lisong Ai
  • Publication number: 20080224236
    Abstract: A gate electrode for semiconductor devices, the gate electrode comprising a mixture of a metal having a work function of about 4 eV or less and a metal nitride.
    Type: Application
    Filed: January 28, 2008
    Publication date: September 18, 2008
    Applicant: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Chi Ren, Hongyu Yu, Siu Hung Daniel Chan, Ming-Fu Li, Dim-Lee Kwong
  • Publication number: 20080210543
    Abstract: A micromachined sensor for measuring vascular parameters, such as fluid shear stress, includes a substrate having a front-side surface, and a backside surface opposite the front-side surface. The sensor includes a diaphragm overlying a cavity etched within the substrate, and a heat sensing element disposed on the front-side surface of the substrate and on top of the cavity and the diaphragm. The heat sensing element is electrically couplable to electrode leads formed on the backside surface of the substrate. The sensor includes an electronic system connected to the backside surface and configured to measure a change in heat convection from the sensing element to surrounding fluid when the sensing element is heated by applying an electric current thereto, and further configured to derive from the change in heat convection vascular parameters such as the shear stress of fluid flowing past the sensing element.
    Type: Application
    Filed: March 3, 2008
    Publication date: September 4, 2008
    Inventors: Tzung K. Hsiai, Gopkrishnani Soundararajan, E.S. Kim, Hongyu Yu, Mahsa Rouhanizadeh, Tiantian Lin
  • Publication number: 20080136030
    Abstract: A semiconductor device is provided comprising a main electrode (4) and a dielectric (3) in contact with the main electrode (4), the main electrode (4) comprising a material having a work function and a work function modulating element (6) for modulating the work function of the material of the main electrode (4) towards a predetermined value. The main electrode (4) furthermore comprises a diffusion preventing dopant element (5) for preventing diffusion of the work function modulating element (6) towards and/or into the dielectric (3). Methods for forming such a semiconductor device are also described.
    Type: Application
    Filed: October 23, 2007
    Publication date: June 12, 2008
    Applicants: Interuniversitair MicroelektronicaCentrum (IMEC), Texas Instruments Inc., Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Shou-Zen Chang, Jorge Adrian Kittl, HongYu Yu, Anne Lauwers, Anabela Veloso
  • Publication number: 20080105933
    Abstract: A semiconductor device is disclosed that comprises a fully silicided electrode formed of an alloy of a semiconductor material and a metal, a workfunction modulating element for modulating a workfunction of the alloy, and a dielectric in contact with the fully silicided electrode. At least a part of the dielectric which is in direct contact with the fully silicided electrode comprises a stopping material for substantially preventing the workfunction modulating element from implantation into and/or diffusing towards the dielectric. A method for forming such a semiconductor device is also disclosed.
    Type: Application
    Filed: October 23, 2007
    Publication date: May 8, 2008
    Applicants: Interuniversitair Microelektronica Centrum (IMEC), Texas Instruments Inc., Taiwan Semiconductor Manufacturing company Ltd.
    Inventors: HongYu Yu, Shou-Zen Chang, Jorge Kittl, Anne Lauwers, Anabela Veloso
  • Patent number: 7367237
    Abstract: A micromachined sensor for measuring vascular parameters, such as fluid shear stress, includes a substrate having a front-side surface, and a backside surface opposite the front-side surface. The sensor includes a diaphragm overlying a cavity etched within the substrate, and a heat sensing element disposed on the front-side surface of the substrate and on top of the cavity and the diaphragm. The heat sensing element is electrically couplable to electrode leads formed on the backside surface of the substrate. The sensor includes an electronic system connected to the backside surface and configured to measure a change in heat convection from the sensing element to surrounding fluid when the sensing element is heated by applying an electric current thereto, and further configured to derive from the change in heat convection vascular parameters such as the shear stress of fluid flowing past the sensing element.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: May 6, 2008
    Assignee: University of Southern California
    Inventors: Tzung K. Hsiai, Gopkrishnani Soundararajan, E. S. Kim, Hongyu Yu, Mahsa Rouhanizadeh, Tiantian Lin
  • Publication number: 20080096383
    Abstract: A method of manufacturing a semiconductor device with at least a first dielectric material and a second dielectric material is disclosed. In one aspect, the method comprises providing a first dielectric material on a substrate. The method further comprises providing a patterned sacrificial layer covering the first dielectric material in at least a first region of the substrate. The method further comprises providing a second dielectric material covering the patterned sacrificial layer in the first region and covering the first dielectric material in at least a second region, the second region being different from the first region. The method further comprises patterning the second dielectric material such that the patterned second dielectric material covers the first dielectric material in the second region but not the patterned sacrificial layer in the first region. The method further comprises removing the patterned sacrificial material.
    Type: Application
    Filed: October 18, 2007
    Publication date: April 24, 2008
    Applicant: Interuniversitair Microelektronica Centrum (IMEC) vzw
    Inventors: Howard Tigelaar, Stefan Kubicek, HongYu Yu
  • Publication number: 20070272967
    Abstract: A new MOSFET device is described comprising a metal gate electrode, a gate dielectric and an interfacial layer. The electrostatic potential at an interface between the gate electrode and the gate dielectric of a MOSFET device can be controlled by introducing one or more interfacial layer(s) of a dielectric material, at the monolayer(s) level (i.e., preferably two monolayers), between the gate electrode and the gate dielectric. A method for its manufacture is also provided and its applications.
    Type: Application
    Filed: May 29, 2007
    Publication date: November 29, 2007
    Applicants: Interuniversitair Microelektronica Centrum (IMEC), Infineon Technologies AG
    Inventors: Luigi Pantisano, Tom Schram, Stefan De Gendt, Amal Akheyar, Geoffrey Pourtois, HongYu Yu
  • Publication number: 20070023849
    Abstract: A MOSFET comprising a fully germano-silicided gate electrode having a high work function is disclosed. This gate electrode is formed by a self-aligned reaction process between a silicidation metal and a semiconductor material comprising silicon and germanium. Preferably, the fully germano-silicided gate is formed by a reaction between nickel and SiGe. The work function of the fully germano-silicided gate electrode can be tuned.
    Type: Application
    Filed: July 11, 2006
    Publication date: February 1, 2007
    Applicant: Interuniversitair Microelektronica Centrum (IMEC)
    Inventors: HongYu Yu, Serge Biesemans
  • Publication number: 20060286802
    Abstract: Low work function metals for use as gate electrode in nMOS devices are provided. The low work function metals include alloys of lanthanide(s), metal and semiconductor. In particular, an alloy of nickel-ytterbium (NiYb) is used to fully silicide (FUSI) a silicon gate. The resulting nickel-ytterbium-silicon gate electrode has a work function of about 4.22 eV.
    Type: Application
    Filed: May 11, 2006
    Publication date: December 21, 2006
    Inventors: HongYu Yu, Chen JingDe, Li Mingfu, Dim-Lee Kwong, Serge Biesemans, Jorge Kittl
  • Publication number: 20060081064
    Abstract: A micromachined sensor for measuring vascular parameters, such as fluid shear stress, includes a substrate having a front-side surface, and a backside surface opposite the front-side surface. The sensor includes a diaphragm overlying a cavity etched within the substrate, and a heat sensing element disposed on the front-side surface of the substrate and on top of the cavity and the diaphragm. The heat sensing element is electrically couplable to electrode leads formed on the backside surface of the substrate. The sensor includes an electronic system connected to the backside surface and configured to measure a change in heat convection from the sensing element to surrounding fluid when the sensing element is heated by applying an electric current thereto, and further configured to derive from the change in heat convection vascular parameters such as the shear stress of fluid flowing past the sensing element.
    Type: Application
    Filed: August 4, 2005
    Publication date: April 20, 2006
    Inventors: Tzung Hsiai, Gopikrishnan Soundararajan, E. Kim, Hongyu Yu, Mahsa Rouhanizadeh, Tiantian Lin
  • Publication number: 20050285208
    Abstract: A gate electrode for semiconductor devices, the gate electrode comprising a mixture of a metal having a work function of about 4 eV or less and a metal nitride.
    Type: Application
    Filed: June 10, 2005
    Publication date: December 29, 2005
    Inventors: Chi Ren, Hongyu Yu, Siu Hung Daniel Chan, Ming-Fu Li, Dim-Lee Kwong