Patents by Inventor Horst Theuss

Horst Theuss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210341555
    Abstract: The present disclosure relates to a magnetic-sensor device comprising a circuit board made of an electrically insulating material and having conductor tracks, and comprising a permanent magnet surface-mounted on the circuit board, and a magnetic-field sensor connected to the conductor tracks of the circuit board. An SMD component for populating a circuit board is also proposed, which SMD component comprises a permanent magnet and a magnetic-field sensor.
    Type: Application
    Filed: April 14, 2021
    Publication date: November 4, 2021
    Inventors: Horst THEUSS, Klaus ELIAN, Helmut WIETSCHORKE
  • Publication number: 20210323812
    Abstract: A sensor device includes a sensor chip with a micro-electromechanical systems (MEMS) structure, wherein the MEMS structure is arranged at a main surface of the sensor chip, and a gas-permeable cover arranged over the main surface of the sensor chip, which covers the MEMS structure and forms a cavity above the MEMS structure.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 21, 2021
    Applicant: Infineon Technologies AG
    Inventors: Rainer Markus SCHALLER, Klaus ELIAN, Horst THEUSS
  • Patent number: 11143626
    Abstract: A photo-acoustic gas sensor may include a detector component. The detector component includes a package that defines a reference volume. The reference volume houses a reference gas. The detector component includes a pressure sensing element to measure an amount of pressure in the reference volume. The amount of pressure in the reference volume depends on absorption of a wavelength of light by the reference gas in the reference volume. A sensitivity of the pressure sensing element when measuring the amount of pressure in the reference volume depends on a length of a reference path associated with the reference volume. The detector component includes a reference path structure that causes the length of the reference path to be less than or equal to 0.5 millimeters.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: October 12, 2021
    Assignee: Infineon Technologies AG
    Inventor: Horst Theuss
  • Publication number: 20210313275
    Abstract: A method for fabricating packaged semiconductor devices is disclosed. In one example the method comprises providing a plurality of semiconductor dies, the semiconductor dies being arranged in an array on a carrier such that a first side of the semiconductor dies faces the carrier and such that an empty space is arranged laterally besides each semiconductor die. A substrate comprising a plurality of conductive elements is arranged over the plurality of semiconductor dies such that a conductive element is arranged in the respective empty space besides each one of the semiconductor dies. The plurality of semiconductor dies are molded over to form a molded body, and singulating packaged semiconductor devices from the molded body by cutting through the molded body.
    Type: Application
    Filed: April 5, 2021
    Publication date: October 7, 2021
    Applicant: Infineon Technologies AG
    Inventor: Horst THEUSS
  • Publication number: 20210285866
    Abstract: A gas sensor includes a multi-wafer stack of a plurality of layers and a measurement chamber. The plurality of layers includes a first layer comprising a sensor element that has a microelectromechanical system (MEMS) membrane; and a second layer comprising an emitter element configured to emit electromagnetic radiation. The measurement chamber is interposed between the first layer and the second layer. The measurement chamber is configured to receive a measurement gas and further receive the electromagnetic radiation emitted by the emitter element as the electromagnetic radiation travels along a radiation path from a first end of the measurement chamber to a second end of the measurement chamber that is opposite to the first end.
    Type: Application
    Filed: June 2, 2021
    Publication date: September 16, 2021
    Applicants: Infineon Technologies AG, Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.
    Inventors: Stefan KOLB, Alfons DEHE, Jochen HUBER, Franz JOST, Horst THEUSS, Wilhelm WIEDMEIER, Juergen WOELLENSTEIN
  • Patent number: 11105776
    Abstract: A detector module is disclosed. In one example, the detector module is for a photo-acoustic gas sensor and comprises a first substrate made of a semiconductor material and comprising a first surface and a second surface opposite to the first surface, a second substrate comprising a third surface, a fourth surface opposite to the third surface, and a first recess formed in the fourth surface. The second substrate is connected with its fourth surface to the first substrate so that the first recess forms an airtight-closed first cell which is filled with a reference gas and a pressure sensitive element comprising a membrane disposed in contact with the reference gas. The detector module is further configured such that a beam of light pulses passes through the first substrate and thereby enters the first cell.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: August 31, 2021
    Assignee: Infineon Technologies AG
    Inventors: Horst Theuss, Rainer Markus Schaller
  • Patent number: 11092538
    Abstract: A gas sensor includes a multi-wafer stack of a plurality of layers and a measurement chamber. The plurality of layers includes a first layer comprising a sensor element that has a microelectromechanical system (MEMS) membrane; and a second layer comprising an emitter element configured to emit electromagnetic radiation. The measurement chamber is interposed between the first layer and the second layer. The measurement chamber is configured to receive a measurement gas and further receive the electromagnetic radiation emitted by the emitter element as the electromagnetic radiation travels along a radiation path from a first end of the measurement chamber to a second end of the measurement chamber that is opposite to the first end.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: August 17, 2021
    Inventors: Stefan Kolb, Alfons Dehe, Jochen Huber, Franz Jost, Horst Theuss, Wilhelm Wiedmeier, Juergen Woellenstein
  • Patent number: 11067542
    Abstract: Photoacoustic gas sensor having a light pulse emitter, a microphone in a reference gas housing having a reference gas, and a sample gas housing to be filled with a gas to be analyzed. A wall separates the sample gas housing from the reference gas housing, and has a transparent region that is transparent to light within a frequency range of emitted light pulses. Remaining inner walls of the sample gas housing have a reflecting surface that reflect light pulses emitted by the emitter so that a portion of the light pulses not absorbed by the gas to be analyzed pass through the transparent region into the reference gas volume. The microphone generates a sensor signal indicating information on an acoustic wave caused by the light pulses interacting with the reference gas after crossing the gas to be analyzed.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: July 20, 2021
    Assignee: Infineon Technologies AG
    Inventors: Alfons Dehe, Stefan Kolb, Horst Theuss
  • Publication number: 20210190543
    Abstract: The present disclosure relates to an inductive angle and/or position sensor comprising a first sensor component and a second sensor component, which is movable relative thereto, wherein the first sensor component comprises an excitation coil and a receiving coil arrangement having two or more individual receiving coils, and wherein the second sensor component comprises an inductive target. The first sensor component comprises a semiconductor chip having an integrated circuit. The sensor comprises a housing, in which the semiconductor chip is arranged. The individual receiving coils of the receiving coil arrangement are configured in at least two structured metallization layers spaced apart from one another, which are arranged within the housing and/or outside on an outer surface of the housing.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 24, 2021
    Inventors: Udo AUSSERLECHNER, Horst THEUSS, Thomas MUELLER
  • Publication number: 20210181151
    Abstract: A photoacoustic sensor includes a first MEMS device and a second MEMS device. The first MEMS device includes a first MEMS component including an optical emitter, and a first optically transparent cover wafer-bonded to the first MEMS component, wherein the first MEMS component and the first optically transparent cover form a first closed cavity. The second MEMS device includes a second MEMS component including a pressure detector, and a second optically transparent cover wafer-bonded to the second MEMS component, wherein the second MEMS component and the second optically transparent cover form a second closed cavity.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 17, 2021
    Applicant: Infineon Technologies AG
    Inventors: Rainer Markus SCHALLER, Jochen DANGELMAIER, Matthias EBERL, Simon GASSNER, Franz JOST, Stefan KOLB, Horst THEUSS
  • Publication number: 20210087054
    Abstract: A method for producing a semiconductor component is proposed. The method includes providing a housing. At least one semiconductor chip is arranged in a cavity of the housing. Furthermore, an electrical contact of the semiconductor chip is connected to an electrical contact of the housing via a bond wire. The method furthermore includes applying a protective material on the electrical contact of the housing and also on a region of the bond wire which is adjacent to the electrical contact of the housing. Moreover, the method also includes filling at least one partial region of the cavity with a gel.
    Type: Application
    Filed: December 9, 2020
    Publication date: March 25, 2021
    Applicant: Infineon Technologies AG
    Inventors: Mathias VAUPEL, Bernhard KNOTT, Horst THEUSS
  • Patent number: 10947109
    Abstract: A method for producing a semiconductor component is proposed. The method includes providing a housing. At least one semiconductor chip is arranged in a cavity of the housing. Furthermore, an electrical contact of the semiconductor chip is connected to an electrical contact of the housing via a bond wire. The method furthermore includes applying a protective material on the electrical contact of the semiconductor chip and also on a region of the bond wire which is adjacent to the electrical contact of the semiconductor chip, and/or on the electrical contact of the housing and also on a region of the bond wire which is adjacent to the electrical contact of the housing. Moreover, the method also includes filling at least one partial region of the cavity with a gel.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: March 16, 2021
    Inventors: Mathias Vaupel, Bernhard Knott, Horst Theuss
  • Publication number: 20210043603
    Abstract: A method of forming a semiconductor package includes providing a panel, providing one or more metal layers on an upper surface of the panel, forming a die pad and bond pads from the one or more metal layers, the die pad being adjacent to and spaced apart from the bond pads, attaching a die to the die pad, forming electrical connections between the die and the bond pads, encapsulating the die and the electrical connections with an electrically insulating mold compound, removing portions of the panel, and exposing the die pad and the bond pads after encapsulating the die.
    Type: Application
    Filed: October 23, 2020
    Publication date: February 11, 2021
    Inventors: Thorsten Meyer, Gerald Ofner, Stephan Bradl, Stefan Miethaner, Alexander Heinrich, Horst Theuss, Peter Scherl
  • Patent number: 10870575
    Abstract: A semiconductor device may include a stress decoupling structure to at least partially decouple a first region of the semiconductor device and a second region of the semiconductor device. The stress decoupling structure may include a set of trenches that are substantially perpendicular to a main surface of the semiconductor device. The first region may include a micro-electro-mechanical (MEMS) structure. The semiconductor device may include a sealing element to at least partially seal openings of the stress decoupling structure.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: December 22, 2020
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Horst Theuss, Bernhard Knott, Thoralf Kautzsch, Mirko Vogt, Maik Stegemann, Andre Roeth, Marco Haubold, Heiko Froehlich, Wolfram Langheinrich, Steffen Bieselt
  • Publication number: 20200388583
    Abstract: A semiconductor device comprises a first semiconductor chip, a first planar waveguide transmission line arranged within a BEOL metal stack of the first semiconductor chip, wherein the first planar waveguide transmission line comprises line sections situated opposite one another, and a second planar waveguide transmission line arranged over the first semiconductor chip and electrically coupled to the first planar waveguide transmission line, wherein the second planar waveguide transmission line comprises line sections situated opposite one another.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 10, 2020
    Inventor: Horst THEUSS
  • Publication number: 20200370983
    Abstract: A pressure sensor module including a housing, a pressure sensor chip, and one or more of an integrated passive device (IDP) chip and discrete passive devices are disclosed. The pressure sensor chip and one or more of the IPD chip and the discrete passive devices are arranged within the housing.
    Type: Application
    Filed: June 9, 2020
    Publication date: November 26, 2020
    Applicant: Infineon Technologies AG
    Inventors: Mathias Vaupel, Matthias Boehm, Steven Gross, Markus Loehndorf, Stephan Schmitt, Horst Theuss, Helmut Wietschorke
  • Publication number: 20200355602
    Abstract: A gas sensor includes a multi-wafer stack of a plurality of layers and a measurement chamber. The plurality of layers includes a first layer comprising a sensor element that has a microelectromechanical system (MEMS) membrane; and a second layer comprising an emitter element configured to emit electromagnetic radiation. The measurement chamber is interposed between the first layer and the second layer. The measurement chamber is configured to receive a measurement gas and further receive the electromagnetic radiation emitted by the emitter element as the electromagnetic radiation travels along a radiation path from a first end of the measurement chamber to a second end of the measurement chamber that is opposite to the first end.
    Type: Application
    Filed: July 31, 2020
    Publication date: November 12, 2020
    Applicants: Infineon Technologies AG, Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.
    Inventors: Stefan KOLB, Alfons DEHE, Jochen HUBER, Franz JOST, Horst THEUSS, Wilhelm WIEDMEIER, Juergen WOELLENSTEIN
  • Publication number: 20200341023
    Abstract: A magnetic field sensor package comprises a chip carrier, a magnetic field sensor which is arranged on the chip carrier and designed to detect a magnetic field, an integrated circuit which is arranged on the chip carrier and designed to logically process sensor signals provided by the magnetic field sensor, and at least one integrated passive component which is electrically coupled to at least one of the magnetic field sensor or the integrated circuit.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 29, 2020
    Inventors: Manfred SCHINDLER, Horst THEUSS, Michael WEBER
  • Patent number: 10802124
    Abstract: Embodiments relate to integrated sonic sensors having a transmitter, a receiver and driver electronics integrated in a single, functional package. In one embodiment, a piezoelectric signal transmitter, a silicon microphone receiver and a controller/amplifier chip are concomitantly integrated in a semiconductor housing. The semiconductor housing, in embodiments, is functional in that at least a portion of the housing can comprise the piezoelectric element of the transmitter, with an inlet aperture opposite the silicon microphone receiver.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: October 13, 2020
    Assignee: Infineon Technologies AG
    Inventors: Klaus Elian, Horst Theuss
  • Patent number: 10782270
    Abstract: A photoacoustic sensor device may include a housing and first and second ceramic cavity packages disposed in the housing. The first ceramic cavity package may include a first sidewall having a first set of electrical contact elements, a first cavity structure, and a light source electrically coupled to the first set of electrical contact elements. The second ceramic cavity package may include a second sidewall having a second set of electrical contact elements, a second cavity structure, and a photoacoustic detector electrically coupled to the second set of electrical contact elements. The first and second ceramic cavity packages may be arranged such that the light source and the photoacoustic detector face one another, and oriented such that the first and second sets of electrical contact elements align with electrical contact points of a PCB when the photoacoustic sensor device is positioned over the PCB for coupling to the PCB.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: September 22, 2020
    Assignee: Infineon Technologies AG
    Inventors: Horst Theuss, Rainer Markus Schaller, Thomas Mueller