Patents by Inventor Hsien Ming
Hsien Ming has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12376361Abstract: A method of forming a semiconductor device includes forming a gate electrode in a wafer. The formation of the gate electrode includes depositing a work-function layer, after the work-function layer is deposited, performing a treatment on the wafer, wherein the treatment is performed by soaking the wafer using a silicon-containing gas; after the treatment, forming a metal capping layer over the work-function layer; and depositing a filling metal over the metal capping layer.Type: GrantFiled: March 21, 2022Date of Patent: July 29, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tsung-Ta Tang, Yi-Ting Wang, Chung Ta Chen, Hsien-Ming Lee
-
Publication number: 20250241048Abstract: Provided is a semiconductor device including a first transistor of a first type comprising a first work function layer, the first work function layer comprising a first underlying layer; and a second transistor of the first type comprising a second work function layer, the second work function layer comprising a second underlying layer. The first and second underlying layers each comprises a metal nitride layer with at least two kinds of metals, and a thickness of the first underlying layer is greater than a thickness of the second underlying layer. A method of manufacturing a gate structure for a semiconductor device is also provided.Type: ApplicationFiled: April 8, 2025Publication date: July 24, 2025Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jui-Fen Chien, Hsiao-Kuan Wei, Hsien-Ming Lee, Chin-You Hsu
-
Patent number: 12354876Abstract: Generally, the present disclosure provides example embodiments relating to formation of a gate structure of a device, such as in a replacement gate process, and the device formed thereby. In an example method, a gate dielectric layer is formed over an active area on a substrate. A dummy layer that contains a passivating species (such as fluorine) is formed over the gate dielectric layer. A thermal process is performed to drive the passivating species from the dummy layer into the gate dielectric layer. The dummy layer is removed. A metal gate electrode is formed over the gate dielectric layer. The gate dielectric layer includes the passivating species before the metal gate electrode is formed.Type: GrantFiled: June 7, 2023Date of Patent: July 8, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Hsiao-Kuan Wei, Hsien-Ming Lee, Chin-You Hsu, Hsin-Yun Hsu, Pin-Hsuan Yeh
-
Publication number: 20250185344Abstract: A dummy gate electrode and a dummy gate dielectric are removed to form a recess between adjacent gate spacers. A gate dielectric is deposited in the recess, and a barrier layer is deposited over the gate dielectric. A first work function layer is deposited over the barrier layer. A first anti-reaction layer is formed over the first work function layer, the first anti-reaction layer reducing oxidation of the first work function layer. A fill material is deposited over the first anti-reaction layer.Type: ApplicationFiled: February 13, 2025Publication date: June 5, 2025Inventors: Chia-Ching Lee, Hsin-Han Tsai, Shih-Hang Chiu, Tsung-Ta Tang, Chung-Chiang Wu, Hung-Chin Chung, Hsien-Ming Lee, Da-Yuan Lee, Jian-Hao Chen, Chien-Hao Chen, Kuo-Feng Yu, Chia-Wei Chen, Chih-Yu Hsu
-
Patent number: 12322696Abstract: A method of making a semiconductor device, includes: forming a first molding layer on a substrate; forming a first plurality of vias in the first molding layer; forming a first conductive line over the first molding layer, wherein the first conductive line is laterally disposed over the first molding layer and a first end of the conductive line aligns with and is electrically coupled to a first via of the first plurality of vias; forming a second molding layer above the first molding layer; and forming a second plurality of vias in the second molding layer, wherein a second via of the second plurality of vias aligns with and is electrically coupled to a second end of the conductive line, and wherein the second plurality of vias, the conductive line, and the first plurality of vias are electrically coupled to one another.Type: GrantFiled: August 9, 2023Date of Patent: June 3, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Shih-Wei Liang, Hung-Yi Kuo, Hao-Yi Tsai, Ming-Hung Tseng, Hsien-Ming Tu
-
Patent number: 12294022Abstract: Provided is a semiconductor device including a first transistor of a first type comprising a first work function layer, the first work function layer comprising a first underlying layer; and a second transistor of the first type comprising a second work function layer, the second work function layer comprising a second underlying layer. The first and second underlying layers each comprises a metal nitride layer with at least two kinds of metals, and a thickness of the first underlying layer is greater than a thickness of the second underlying layer. A method of manufacturing a gate structure for a semiconductor device is also provided.Type: GrantFiled: June 19, 2023Date of Patent: May 6, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jui-Fen Chien, Hsiao-Kuan Wei, Hsien-Ming Lee, Chin-You Hsu
-
Patent number: 12278199Abstract: The present disclosure provides a method of processing a semiconductor structure. The method includes: placing a first semiconductor structure inside a semiconductor processing apparatus; supplying a solution, wherein the solution is directed toward a surface of the first semiconductor structure, and the solution includes a solvent and a resist; rotating the first semiconductor structure to spread the solution over the surface of the first semiconductor structure; forming a resist layer on the surface of the first semiconductor structure using the resist in the solution; and removing a portion of the solvent from the solution by an exhaust fan disposed adjacent to a periphery of the first semiconductor structure.Type: GrantFiled: October 27, 2023Date of Patent: April 15, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Chang-Pin Huang, Tung-Liang Shao, Hsien-Ming Tu, Ching-Jung Yang, Yu-Chia Lai
-
Patent number: 12261126Abstract: A semiconductor package includes an encapsulated semiconductor device, a backside redistribution structure, and a front side redistribution structure. The encapsulated semiconductor device includes an encapsulating material and a semiconductor device encapsulated by the encapsulating material. The backside redistribution structure is disposed on a backside of the encapsulated semiconductor device and includes a redistribution circuit layer and a first patterned dielectric layer. The redistribution circuit layer has a circuit pattern and a dummy pattern electrically insulated from the circuit pattern. The dummy pattern is overlapped with the semiconductor device from a top view of the semiconductor package. The first patterned dielectric layer is disposed on the redistribution circuit layer and includes a marking pattern disposed on the dummy pattern and revealing a part of the dummy pattern.Type: GrantFiled: January 24, 2024Date of Patent: March 25, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tsung-Hsien Chiang, Hsien-Ming Tu, Hao-Yi Tsai, Tin-Hao Kuo
-
Patent number: 12255104Abstract: A dummy gate electrode and a dummy gate dielectric are removed to form a recess between adjacent gate spacers. A gate dielectric is deposited in the recess, and a barrier layer is deposited over the gate dielectric. A first work function layer is deposited over the barrier layer. A first anti-reaction layer is formed over the first work function layer, the first anti-reaction layer reducing oxidation of the first work function layer. A fill material is deposited over the first anti-reaction layer.Type: GrantFiled: August 2, 2023Date of Patent: March 18, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chia-Ching Lee, Hsin-Han Tsai, Shih-Hang Chiu, Tsung-Ta Tang, Chung-Chiang Wu, Hung-Chin Chung, Hsien-Ming Lee, Da-Yuan Lee, Jian-Hao Chen, Chien-Hao Chen, Kuo-Feng Yu, Chia-Wei Chen, Chih-Yu Hsu
-
Patent number: 12237228Abstract: An improved work function layer and a method of forming the same are disclosed. In an embodiment, the method includes forming a semiconductor fin extending from a substrate; depositing a dielectric layer over the semiconductor fin; depositing a first work function layer over the dielectric layer; and exposing the first work function layer to a metastable plasma of a first reaction gas, a metastable plasma of a generation gas, and a metastable plasma of a second reaction gas, the first reaction gas being different from the second reaction gas.Type: GrantFiled: June 30, 2023Date of Patent: February 25, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shao-Jyun Wu, Hung-Chi Wu, Chia-Ching Lee, Pin-Hsuan Yeh, Hung-Chin Chung, Hsien-Ming Lee, Chien-Hao Chen, Sheng-Liang Pan, Huan-Just Lin
-
Publication number: 20250053384Abstract: A method for multiple executable binaries with static links is provided. The method includes a fixed binary generated from non-modified source program file has symbols of functions and variables with fixed addresses; a first modifiable binary generated from modified source program files has symbols of functions and variables with changed addresses; and a first reference table contains the symbols of functions and variables of the first modifiable binary which are referred by the fixed binary; wherein the first modifiable binary refers to the symbols of the fixed binary directly, and the fixed binary refers to the symbols of functions and the variables of the first modifiable binary through the first reference table at runtime.Type: ApplicationFiled: August 10, 2023Publication date: February 13, 2025Inventors: Wei-Chun KAO, Hsien-Ming TSAI, Jing-Yen HUANG, Ming-Chun CHENG
-
Patent number: 12183629Abstract: A method includes forming a gate electrode on a semiconductor region, recessing the gate electrode to generate a recess, performing a first deposition process to form a first metallic layer on the gate electrode and in the recess, wherein the first deposition process is performed using a first precursor, and performing a second deposition process to form a second metallic layer on the first metallic layer using a second precursor different from the first precursor. The first metallic layer and the second metallic layer comprise a same metal. The method further incudes forming a dielectric hard mask over the second metallic layer, and forming a gate contact plug penetrating through the dielectric hard mask. The gate contact plug contacts a top surface of the second metallic layer.Type: GrantFiled: July 20, 2022Date of Patent: December 31, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chung-Chiang Wu, Po-Cheng Chen, Kuo-Chan Huang, Pin-Hsuan Yeh, Wei-Chin Lee, Hsien-Ming Lee, Chien-Hao Chen, Chi On Chui
-
Patent number: 12176251Abstract: The present disclosure provides a semiconductor device with a profiled work-function metal gate electrode. The semiconductor structure includes a metal gate structure formed in an opening of an insulating layer. The metal gate structure includes a gate dielectric layer, a barrier layer, a work-function metal layer between the gate dielectric layer and the barrier layer and a work-function adjustment layer over the barrier layer, wherein the work-function metal has an ordered grain orientation. The present disclosure also provides a method of making a semiconductor device with a profiled work-function metal gate electrode.Type: GrantFiled: July 25, 2023Date of Patent: December 24, 2024Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Da-Yuan Lee, Hung-Chin Chung, Hsien-Ming Lee, Kuan-Ting Liu, Syun-Ming Jang, Weng Chang, Wei-Jen Lo
-
Patent number: 12170202Abstract: The present disclosure relates to a semiconductor device and a manufacturing method of fabricating a semiconductor structure. The method includes forming an opening in a substrate and depositing a conformal metal layer in the opening. The depositing includes performing one or more deposition cycles. The deposition includes flowing a first precursor into a deposition chamber and purging the deposition chamber to remove at least a portion of the first precursor. The method also includes flowing a second precursor into the deposition chamber to form a sublayer of the conformal metal layer and purging the deposition chamber to remove at least a portion of the second precursor. The method further includes performing a metallic halide etching (MHE) process that includes flowing a third precursor into the deposition chamber.Type: GrantFiled: January 2, 2023Date of Patent: December 17, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Po-Yu Lin, Chi-Yu Chou, Hsien-Ming Lee, Huai-Tei Yang, Chun-Chieh Wang, Yueh-Ching Pai, Chi-Jen Yang, Tsung-Ta Tang, Yi-Ting Wang
-
Publication number: 20240387276Abstract: Semiconductor devices and methods of manufacturing semiconductor devices with differing threshold voltages are provided. In embodiments the threshold voltages of individual semiconductor devices are tuned through the removal and placement of differing materials within each of the individual gate stacks within a replacement gate process, whereby the removal and placement helps keep the overall process window for a fill material large enough to allow for a complete fill.Type: ApplicationFiled: July 29, 2024Publication date: November 21, 2024Inventors: Chung-Chiang Wu, Hung-Chin Chung, Hsien-Ming Lee, Chien-Hao Chen, Ching-Hwanq Su
-
Publication number: 20240387257Abstract: A method includes forming a gate electrode on a semiconductor region, recessing the gate electrode to generate a recess, performing a first deposition process to form a first metallic layer on the gate electrode and in the recess, wherein the first deposition process is performed using a first precursor, and performing a second deposition process to form a second metallic layer on the first metallic layer using a second precursor different from the first precursor. The first metallic layer and the second metallic layer comprise a same metal. The method further incudes forming a dielectric hard mask over the second metallic layer, and forming a gate contact plug penetrating through the dielectric hard mask. The gate contact plug contacts a top surface of the second metallic layer.Type: ApplicationFiled: July 30, 2024Publication date: November 21, 2024Inventors: Chung-Chiang Wu, Po-Cheng Chen, Kuo-Chan Huang, Pin-Hsuan Yeh, Wei-Chin Lee, Hsien-Ming Lee, Chien-Hao Chen, Chi On Chui
-
Patent number: 12142530Abstract: Semiconductor devices and methods of manufacturing semiconductor devices with differing threshold voltages are provided. In embodiments the threshold voltages of individual semiconductor devices are tuned through the removal and placement of differing materials within each of the individual gate stacks within a replacement gate process, whereby the removal and placement helps keep the overall process window for a fill material large enough to allow for a complete fill.Type: GrantFiled: July 1, 2021Date of Patent: November 12, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chung-Chiang Wu, Hung-Chin Chung, Hsien-Ming Lee, Chien-Hao Chen, Ching-Hwanq Su
-
Publication number: 20240371981Abstract: A method of forming a semiconductor device includes: forming a dummy gate over a fin, where the fin protrudes above a substrate; surrounding the dummy gate with a dielectric material; and replacing the dummy gate with a replacement gate structure, where replacing the dummy gate includes: forming a gate trench in the dielectric material, where forming the gate trench includes removing the dummy gate; forming a metal-gate stack in the gate trench, where forming the metal-gate stack includes forming a gate dielectric layer, a first work function layer, and a gap-filling material sequentially in the gate trench; and enlarging a volume of the gap-filling material in the gate trench.Type: ApplicationFiled: July 17, 2024Publication date: November 7, 2024Inventors: Chih-Hsiang Fan, Tsung-Han Shen, Jia-Ming Lin, Wei-Chin Lee, Hsien-Ming Lee, Chi On Chui
-
Publication number: 20240363627Abstract: A structure includes a semiconductor substrate including a first semiconductor region and a second semiconductor region, a first transistor in the first semiconductor region, and a second transistor in the second semiconductor region. The first transistor includes a first gate dielectric over the first semiconductor region, a first work function layer over and contacting the first gate dielectric, and a first conductive region over the first work function layer. The second transistor includes a second gate dielectric over the second semiconductor region, a second work function layer over and contacting the second gate dielectric, wherein the first work function layer and the second work function layer have different work functions, and a second conductive region over the second work function layer.Type: ApplicationFiled: July 9, 2024Publication date: October 31, 2024Inventors: Kuan-Chang Chiu, Chia-Ching Lee, Chien-Hao Chen, Hung-Chin Chung, Hsien-Ming Lee, Chi On Chui, Hsuan-Yu Tung, Chung-Chiang Wu
-
Publication number: 20240363350Abstract: The present disclosure relates to a semiconductor device and a manufacturing method of fabricating a semiconductor structure. The method includes forming an opening in a substrate and depositing a conformal metal layer in the opening. The depositing includes performing one or more deposition cycles. The deposition includes flowing a first precursor into a deposition chamber and purging the deposition chamber to remove at least a portion of the first precursor. The method also includes flowing a second precursor into the deposition chamber to form a sublayer of the conformal metal layer and purging the deposition chamber to remove at least a portion of the second precursor. The method further includes performing a metallic halide etching (MHE) process that includes flowing a third precursor into the deposition chamber.Type: ApplicationFiled: July 8, 2024Publication date: October 31, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Po-Yu LIN, Chi-Yu CHOU, Hsien-Ming LEE, Huai-Tei YANG, Chun-Chieh WANG, Yueh-Ching PAI, Chi-Jen YANG, Tsung-Ta TANG, Yi-Ting WANG