Patents by Inventor Hsin-Chin Jiang

Hsin-Chin Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10868421
    Abstract: An on-chip multiple-stage electrical overstress (EOS) protection device is disclosed. The protection device includes a surge protector having a first clamping voltage and a first electrostatic discharge (ESD) protector having a second clamping voltage lower than the first clamping voltage. The surge protector is electrically connected to the first ESD protector in parallel. The surge protector and the first ESD protector are electrically connected between a receiving terminal and a voltage terminal, and the receiving terminal is electrically connected to an internal circuit. When an electrical overstress (EOS) signal including an electrostatic discharge (ESD) signal and a surge signal appears at the receiving terminal, the first ESD protector and the surge protector are triggered on in turn to clamp a voltage received by the internal circuit.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: December 15, 2020
    Assignee: Amazing Microelectronic Corp.
    Inventors: James Jeng-Jie Peng, Woei-Lin Wu, Ryan Hsin-Chin Jiang
  • Patent number: 10700517
    Abstract: An active surge protection structure is provided between a power line and a core circuit, comprising a surge-to-digital converter and a clamp circuit. The surge-to-digital converter comprises a plurality of surge detection circuit. Each surge detection circuit detects a surge event occurring on the power line and generates a digital signal. The clamp circuit is disposed adjacent to the core circuit and electrically connected with the surge-to-digital converter and the power line where the core circuit is connected for dissipating surge energy. The clamp circuit receives and is driven by the digital signals from the surge-to-digital converter such that its protection flexibility can be achieved according to the digital signals. By employing the present invention, it is extraordinarily advantageous of improving system stability and achieving comprehensive surge protection with configuration of driving capability dependent on surge levels.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: June 30, 2020
    Assignee: AMAZING MICROELECTRONIC CORP.
    Inventors: Wen-Chieh Chen, Ming-Dou Ker, Ryan Hsin-Chin Jiang
  • Publication number: 20200028355
    Abstract: An active surge protection structure is provided between a power line and a core circuit, comprising a surge-to-digital converter and a clamp circuit. The surge-to-digital converter comprises a plurality of surge detection circuit. Each surge detection circuit detects a surge event occurring on the power line and generates a digital signal. The clamp circuit is disposed adjacent to the core circuit and electrically connected with the surge-to-digital converter and the power line where the core circuit is connected for dissipating surge energy. The clamp circuit receives and is driven by the digital signals from the surge-to-digital converter such that its protection flexibility can be achieved according to the digital signals. By employing the present invention, it is extraordinarily advantageous of improving system stability and achieving comprehensive surge protection with configuration of driving capability dependent on surge levels.
    Type: Application
    Filed: July 23, 2018
    Publication date: January 23, 2020
    Inventors: WEN-CHIEH CHEN, MING-DOU KER, RYAN HSIN-CHIN JIANG
  • Publication number: 20200014200
    Abstract: An on-chip multiple-stage electrical overstress (EOS) protection device is disclosed. The protection device includes a surge protector having a first clamping voltage and a first electrostatic discharge (ESD) protector having a second clamping voltage lower than the first clamping voltage. The surge protector is electrically connected to the first ESD protector in parallel. The surge protector and the first ESD protector are electrically connected between a receiving terminal and a voltage terminal, and the receiving terminal is electrically connected to an internal circuit. When an electrical overstress (EOS) signal including an electrostatic discharge (ESD) signal and a surge signal appears at the receiving terminal, the first ESD protector and the surge protector are triggered on in turn to clamp a voltage received by the internal circuit.
    Type: Application
    Filed: July 5, 2018
    Publication date: January 9, 2020
    Inventors: JAMES JENG-JIE PENG, WOEI-LIN WU, RYAN HSIN-CHIN JIANG
  • Patent number: 9929151
    Abstract: A self-balanced diode device includes a substrate, a doped well, at least one first conductivity type heavily doped fin and at least two second conductivity type heavily doped fins. The doped well is arranged in the substrate. The first conductivity type heavily doped fin is arranged in the doped well, arranged in a line along a first direction, and protruded up from a surface of the substrate. The second conductivity type heavily doped fins is arranged in the doped well, arranged in a line along a second direction intersecting the first direction, respectively arranged at two opposite sides of the first conductivity type heavily doped fin, and protruded up from the surface of the substrate. Each second conductivity type heavily doped fin and the first conductivity type heavily doped fin are spaced at a fixed interval.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: March 27, 2018
    Assignee: Amazing Microelectronic Corp.
    Inventors: Ming-Dou Ker, Woei-Lin Wu, James Jeng-Jie Peng, Ryan Hsin-Chin Jiang
  • Publication number: 20180053760
    Abstract: A self-balanced diode device includes a substrate, a doped well, at least one first conductivity type heavily doped fin and at least two second conductivity type heavily doped fins. The doped well is arranged in the substrate. The first conductivity type heavily doped fin is arranged in the doped well, arranged in a line along a first direction, and protruded up from a surface of the substrate. The second conductivity type heavily doped fins is arranged in the doped well, arranged in a line along a second direction intersecting the first direction, respectively arranged at two opposite sides of the first conductivity type heavily doped fin, and protruded up from the surface of the substrate. Each second conductivity type heavily doped fin and the first conductivity type heavily doped fin are spaced at a fixed interval.
    Type: Application
    Filed: March 23, 2017
    Publication date: February 22, 2018
    Inventors: MING-DOU KER, WOEI-LIN WU, JAMES JENG-JIE PENG, RYAN HSIN-CHIN JIANG
  • Patent number: 9786653
    Abstract: A self-balanced diode device includes a substrate, a doped well, at least one first conductivity type heavily doped fin and at least two second conductivity type heavily doped fins. The doped well is arranged in the substrate. The first conductivity type heavily doped fin is arranged in the doped well, arranged in a line along a first direction, and protruded up from a surface of the substrate. The second conductivity type heavily doped fins is arranged in the doped well, arranged in a line along a second direction intersecting the first direction, respectively arranged at two opposite sides of the first conductivity type heavily doped fin, and protruded up from the surface of the substrate. Each second conductivity type heavily doped fin and the first conductivity type heavily doped fin are spaced at a fixed interval.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: October 10, 2017
    Assignee: Amazing Microelectronic Corp.
    Inventors: Ming-Dou Ker, Woei-Lin Wu, James Jeng-Jie Peng, Ryan Hsin-Chin Jiang
  • Patent number: 9748219
    Abstract: A self-balanced silicon-controlled rectification device includes a substrate, an N-type doped well, a P-type doped well, at least one heavily doped clamping fin, at least one first P-type heavily doped fin, and at least one first N-type heavily doped fin. The N-type doped well and the P-type doped well are arranged in the substrate. The heavily doped clamping fin is arranged in the N-type doped well and the P-type well and protruded up from a surface of the substrate. The first P-type heavily doped fin and the first N-type heavily doped fin are respectively arranged in the N-type doped well and the P-type doped well, and protruded up from the surface of the substrate. The abovementioned elements forms silicon-controlled rectifiers (SCRs) are forward biased to generate uniform electrostatic discharge (ESD) currents through the SCRs.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: August 29, 2017
    Assignee: Amazing Microelectronic Corp.
    Inventors: Ming-Dou Ker, Woei-Lin Wu, James Jeng-Jie Peng, Ryan Hsin-Chin Jiang
  • Patent number: 9728530
    Abstract: A bipolar transistor device includes a substrate and at least one first transistor unit. The first transistor unit includes a first doped well of first conductivity type, at least one first fin-based structure and at least one second fin-based structure. The first fin-based structure includes a first gate strip and first doped fins arranged in the first doped well, and the first gate strip is floating. The second fin-based structure includes a second gate strip and second doped fins arranged in the first doped well, and the second gate strip is floating. The first doped fins, the second doped fins and the first doped well form first BJTs, and the first doped fins and the second doped fins are respectively coupled to high and low voltage terminals.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: August 8, 2017
    Assignee: Amazing Microelectronic Corp.
    Inventors: Ming-Dou Ker, Woei-Lin Wu, James Jeng-Jie Peng, Ryan Hsin-Chin Jiang
  • Patent number: 9685936
    Abstract: A self-feedback control circuit is connected to a controller area network bus for controlling a high-level output and a low-level output, comprising a controller area network driving circuit and a replica circuit. The replica circuit is connected in parallel with the controller area network driving circuit and comprises an upper feedback path and a lower feedback path. The upper feedback path and the lower feedback path are connected jointly to a common mode, and the replica circuit provides a feedback signal from the common mode such that the feedback signal is able to be respectively transmitted to two individual transistors of the controller area network driving circuit through the upper feedback path and through the lower feedback path so as to control DC level stability of the high-level output and the low-level output.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: June 20, 2017
    Assignee: Amazing Microelectronic Corp.
    Inventors: Long-Xi Chang, Ryan Hsin-Chin Jiang
  • Patent number: 9608606
    Abstract: A slope control circuit is connected between a replica circuit and a controller area network bus. The replica circuit generates an upper and a lower feedback signal. The slope control circuit receives and is driven by the feedback signals for controlling a voltage slope of a high-level output and a low-level output. The slope control circuit comprises an upper and a lower driving circuit, individually connected between the replica circuit, the high-level output and the low-level output. The upper driving circuit and the lower driving circuit respectively include at least one charging and discharging circuit. By controlling the charging and discharging circuit, the present invention controls decreasing voltage slope of the high-level output to be symmetric to increasing voltage slope of the low-level output, and delay time of the circuit switching between different operating modes to be equivalent.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: March 28, 2017
    Assignee: Amazing Microelectronic Corp.
    Inventors: Long-Xi Chang, Ryan Hsin-Chin Jiang
  • Publication number: 20170063354
    Abstract: A slope control circuit is connected between a replica circuit and a controller area network bus. The replica circuit generates an upper and a lower feedback signal. The slope control circuit receives and is driven by the feedback signals for controlling a voltage slope of a high-level output and a low-level output. The slope control circuit comprises an upper and a lower driving circuit, individually connected between the replica circuit, the high-level output and the low-level output. The upper driving circuit and the lower driving circuit respectively include at least one charging and discharging circuit. By controlling the charging and discharging circuit, the present invention controls decreasing voltage slope of the high-level output to be symmetric to increasing voltage slope of the low-level output, and delay time of the circuit switching between different operating modes to be equivalent.
    Type: Application
    Filed: December 1, 2015
    Publication date: March 2, 2017
    Inventors: LONG-XI CHANG, RYAN HSIN-CHIN JIANG
  • Publication number: 20170063352
    Abstract: A self-feedback control circuit is connected to a controller area network bus for controlling a high-level output and a low-level output, comprising a controller area network driving circuit and a replica circuit. The replica circuit is connected in parallel with the controller area network driving circuit and comprises an upper feedback path and a lower feedback path. The upper feedback path and the lower feedback path are connected jointly to a common mode, and the replica circuit provides a feedback signal from the common mode such that the feedback signal is able to be respectively transmitted to two individual transistors of the controller area network driving circuit through the upper feedback path and through the lower feedback path so as to control DC level stability of the high-level output and the low-level output.
    Type: Application
    Filed: December 1, 2015
    Publication date: March 2, 2017
    Inventors: LONG-XI CHANG, RYAN HSIN-CHIN JIANG
  • Patent number: 9462394
    Abstract: The present invention discloses a splicing type electret loudspeaker. The splicing type electret loudspeaker may comprise a plurality of electret loudspeaker units. Each electret loudspeaker unit may comprise a plurality of connection ports, and these connection ports may be disposed around the edge of each electret loudspeaker unit. In particular, the connection ports of each electret loudspeaker unit can respectively connect to one of the connection ports of another electret loudspeaker unit; in this way, these electret loudspeaker units can connect to each other in parallel, such that the power input signal and the audio input signal can be transmitted to all electret loudspeaker units to drive them.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: October 4, 2016
    Assignee: AMAZING MICROELECTRONIC CORP.
    Inventors: Mou-Ong Sher, Ryan Hsin-Chin Jiang, Ming-Che Hsieh
  • Publication number: 20160192083
    Abstract: The present invention discloses a splicing type electret loudspeaker. The splicing type electret loudspeaker may comprise a plurality of electret loudspeaker units. Each electret loudspeaker unit may comprise a plurality of connection ports, and these connection ports may be disposed around the edge of each electret loudspeaker unit. In particular, the connection ports of each electret loudspeaker unit can respectively connect to one of the connection ports of another electret loudspeaker unit; in this way, these electret loudspeaker units can connect to each other in parallel, such that the power input signal and the audio input signal can be transmitted to all electret loudspeaker units to drive them.
    Type: Application
    Filed: December 31, 2014
    Publication date: June 30, 2016
    Inventors: MOU-ONG SHER, RYAN HSIN-CHIN JIANG, MING-CHE HSIEH
  • Patent number: 9264042
    Abstract: The present invention discloses a serial transmission driving method, wherein a serial transmission driving device (STD) is connected with a first terminal (FT) and a second terminal (ST) of an equivalent load capacitor through a first differential bus (FDB) and a second differential bus (SDB). FDB and SDB are respectively connected with a high-potential terminal (HPT) and a low-potential terminal (LPT) through a first equivalent resistor and a second equivalent resistor. STD receives a trigger signal (TS) appearing during the transition between a turn-on signal (Ton) and a turn-off signal (Toff), generates a first potential (FP) and a second potential (SP) greater than FP according to TS, and respectively applies FP and SP to SDB and FDB. FP and SP fast change the potential of FT to be greater than that of ST. HPT and LPT maintain potentials of FDB and SDB until Toff ends.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: February 16, 2016
    Assignee: AMAZING MICROELECTRONIC CORP.
    Inventors: Tang-Kuei Tseng, Chih-Hao Chen, Szu-Hsien Wu, Ryan Hsin-Chin Jiang
  • Patent number: 9153679
    Abstract: A silicon-controlled rectification device with high efficiency is disclosed, which comprises a P-type region surrounding an N-type region. A first P-type heavily doped area is arranged in the N-type region and connected with a high-voltage terminal. A plurality of second N-type heavily doped areas is arranged in the N-type region. A plurality of second P-type heavily doped areas is closer to the second N-type heavily doped areas than the first N-type heavily doped area and arranged in the P-type region. At least one third N-type heavily doped area is arranged in the P-type region and connected with a low-voltage terminal. Alternatively or in combination, the second N-type heavily doped areas and the second P-type heavily doped areas are respectively arranged in the P-type region and the N-type region.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: October 6, 2015
    Assignee: Amazing Microelectronic Corp.
    Inventors: Tung-Yang Chen, James Jeng-Jie Peng, Woei-Lin Wu, Ryan Hsin-Chin Jiang
  • Publication number: 20150194511
    Abstract: A silicon-controlled rectification device with high efficiency is disclosed, which comprises a P-type region surrounding an N-type region. A first P-type heavily doped area is arranged in the N-type region and connected with a high-voltage terminal. A plurality of second N-type heavily doped areas is arranged in the N-type region. A plurality of second P-type heavily doped areas is closer to the second N-type heavily doped areas than the first N-type heavily doped area and arranged in the P-type region. At least one third N-type heavily doped area is arranged in the P-type region and connected with a low-voltage terminal. Alternatively or in combination, the second N-type heavily doped areas and the second P-type heavily doped areas are respectively arranged in the P-type region and the N-type region.
    Type: Application
    Filed: March 19, 2015
    Publication date: July 9, 2015
    Inventors: Tung-Yang CHEN, James Jeng-Jie PENG, Woei-Lin WU, Ryan Hsin-Chin JIANG
  • Publication number: 20150145557
    Abstract: The present invention discloses a serial transmission driving method, wherein a serial transmission driving device (STD) is connected with a first terminal (FT) and a second terminal (ST) of an equivalent load capacitor through a first differential bus (FDB) and a second differential bus (SDB). FDB and SDB are respectively connected with a high-potential terminal (HPT) and a low-potential terminal (LPT) through a first equivalent resistor and a second equivalent resistor. STD receives a trigger signal (TS) appearing during the transition between a turn-on signal (Ton) and a turn-off signal (Toff), generates a first potential (FP) and a second potential (SP) greater than FP according to TS, and respectively applies FP and SP to SDB and FDB. FP and SP fast change the potential of FT to be greater than that of ST. HPT and LPT maintain potentials of FDB and SDB until Toff ends.
    Type: Application
    Filed: March 6, 2014
    Publication date: May 28, 2015
    Applicant: Amazing Microelectronic Corp.
    Inventors: Tang-Kuei TSENG, Chih-Hao CHEN, Szu-Hsien WU, Ryan Hsin-Chin JIANG
  • Patent number: 9024354
    Abstract: A silicon-controlled rectification device with high efficiency is disclosed, which comprises a P-type region surrounding an N-type region. A first P-type heavily doped area is arranged in the N-type region and connected with a high-voltage terminal. A plurality of second N-type heavily doped areas is arranged in the N-type region. A plurality of second P-type heavily doped areas is closer to the second N-type heavily doped areas than the first N-type heavily doped area and arranged in the P-type region. At least one third N-type heavily doped area is arranged in the P-type region and connected with a low-voltage terminal. Alternatively or in combination, the second N-type heavily doped areas and the second P-type heavily doped areas are respectively arranged in the P-type region and the N-type region.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: May 5, 2015
    Assignee: Amazing Microelectronics Corp.
    Inventors: Tung-Yang Chen, James Jeng-Jie Peng, Woei-Lin Wu, Ryan Hsin-Chin Jiang