Patents by Inventor Hsin-Chin Jiang

Hsin-Chin Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8232601
    Abstract: The present invention relates a transient voltage suppressor (TVS) for directional ESD protection. The TVS includes: a conductivity type substrate; a first type lightly doped region, having a first type heavily doped region arranged therein; a second type lightly doped region, having a second type heavily doped region and a third type heavily doped region arranged therein; a third type lightly doped region, having a fourth type heavily doped region arranged therein; a plurality of closed isolation trenches, arranged on the conductivity type substrate, wherein at least one of the plurality of closed isolation trenches is neighbored one of the type lightly doped regions; and a first pin. Accordingly, the TVS of present invention may adaptively provide effective ESD protection under positive and negative ESD stresses, improve the efficiency of ESD protection within the limited layout area.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: July 31, 2012
    Assignee: Amazing Microelectronic Corp.
    Inventors: Kun-Hsien Lin, Che-Hao Chuang, Ryan Hsin-Chin Jiang
  • Patent number: 8217421
    Abstract: A new ESD protection device with an integrated-circuit vertical transistor structure is disclosed, which includes a heavily doped p-type substrate (P+ substrate), a n-type well (N well) in the P+ substrate, a heavily doped p-type diffusion (P+ diffusion) in the N well, a heavily doped n-type diffusion (N+ diffusion) in the N well, and a p-type well (P well) surrounding the N well in the P+ substrate. A bond pad is connected to both the P+ and N+ diffusions, and a ground is coupled to the P+ substrate. Another P+ diffusion is implanted in the N well or another N+ diffusion is implanted in the P well to form a Zener diode, which behaves as a trigger for the PNP transistor when a positive ESD zaps. A parasitic diode is formed at the junction between the P+ substrate and the N well, to bypass a negative ESD stress on the bond pad.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: July 10, 2012
    Assignee: Amazing Microelectronic Corp.
    Inventors: Zi-Ping Chen, Kun-Hsien Lin, Ryan Hsin-Chin Jiang
  • Patent number: 8217462
    Abstract: The present invention relates a transient voltage suppressor (TVS) for directional ESD protection. The TVS includes: a conductivity type substrate; a first type lightly doped region, having a first type heavily doped region arranged therein; a second type lightly doped region, having a second type heavily doped region and a third type heavily doped region arranged therein; a third type lightly doped region, having a fourth type heavily doped region arranged therein; a plurality of closed isolation trenches, arranged on the conductivity type substrate, wherein at least one of the plurality of closed isolation trenches is neighbored one of the type lightly doped regions; and a first pin. Accordingly, the TVS of present invention may adaptively provide effective ESD protection under positive and negative ESD stresses, improve the efficiency of ESD protection within the limited layout area.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: July 10, 2012
    Assignee: Amazing Microelectronic Corp.
    Inventors: Kun-Hsien Lin, Che-Hao Chuang, Ryan Hsin-Chin Jiang
  • Patent number: 8169000
    Abstract: A lateral transient voltage suppressor with ultra low capacitance is disclosed. The suppressor comprises a first conductivity type substrate and at least one diode cascade structure arranged in the first conductivity type substrate. The cascade structure further comprises at least one second conductivity type lightly doped well and at least one first conductivity type lightly doped well, wherein there are two heavily doped areas arranged in the second conductivity type lightly doped well and the first conductivity type lightly doped well. The cascade structure neighbors a second conductivity type well, wherein there are three heavily doped areas arranged in the second conductivity type well. The suppressor further comprises a plurality of deep isolation trenches arranged in the first conductivity type substrate and having a depth greater than depths of the second conductivity type lightly doped well, the second conductivity type well and the first conductivity type lightly doped well.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: May 1, 2012
    Assignee: Amazing Microelectronic Corp.
    Inventors: Che-Hao Chuang, Kun-Hsien Lin, Ryan Hsin-Chin Jiang
  • Publication number: 20120068299
    Abstract: The present invention relates a transient voltage suppressor (TVS) for directional ESD protection. The TVS includes: a conductivity type substrate; a first type lightly doped region, having a first type heavily doped region arranged therein; a second type lightly doped region, having a second type heavily doped region and a third type heavily doped region arranged therein; a third type lightly doped region, having a fourth type heavily doped region arranged therein; a plurality of closed isolation trenches, arranged on the conductivity type substrate, wherein at least one of the plurality of closed isolation trenches is neighbored one of the type lightly doped regions; and a first pin. Accordingly, the TVS of present invention may adaptively provide effective ESD protection under positive and negative ESD stresses, improve the efficiency of ESD protection within the limited layout area.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 22, 2012
    Applicant: AMAZING MICROELECTRONIC CORP.
    Inventors: Kun-Hsien Lin, Che-Hao Chuang, Ryan Hsin-Chin Jiang
  • Publication number: 20120056238
    Abstract: A bidirectional silicon-controlled rectifier, wherein the conventional field oxide layer, which separates an anode structure from a cathode structure, is replaced by a field oxide layer having floating gates, a virtual gate or a virtual active region. Thus, the present invention can reduce or escape from the bird's beak effect of a field oxide layer, which results in crystalline defects, a concentrated current and a higher magnetic field and then causes abnormal operation of a rectifier. Thereby, the present invention can also reduce signal loss.
    Type: Application
    Filed: November 15, 2011
    Publication date: March 8, 2012
    Inventors: Wen-Yi CHEN, Ryan Hsin-Chin JIANG, Ming-Dou KER
  • Patent number: 8116049
    Abstract: The invention discloses a transient voltage detection circuit suitable for an electronic system. The electronic system includes a high voltage line and a low voltage line. The transient voltage detection circuit includes at least one detection circuit and a judge module. Each detection circuit includes a P-typed transistor and/or an N-typed transistor, a capacitor and a detection node. The transistor is coupled with the capacitor, and the detection node is located between the transistor and the capacitor. The judge module is coupled to each of the detection nodes. The judge module generates a judgment according to voltage levels of the detection nodes. Accordingly, the transient voltage detection circuit is formed. The electronic system may selectively execute a protective action according to the judgment.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: February 14, 2012
    Assignee: Amazing Microelectronic Corp.
    Inventors: Ming-Dou Ker, Hsin-Chin Jiang, Wen-Yi Chen
  • Publication number: 20120025350
    Abstract: A vertical transient voltage suppressor for protecting an electronic device is disclosed. The vertical transient voltage includes a conductivity type substrate having highly doping concentration; a first type lightly doped region is arranged on the conductivity type substrate, wherein the conductivity type substrate and the first type lightly doped region respectively belong to opposite types; a first type heavily doped region and a second type heavily doped region are arranged in the first type lightly doped region, wherein the first and second type heavily doped regions and the conductivity type substrate belong to same types; and a deep first type heavily doped region is arranged on the conductivity type substrate and neighbors the first type lightly doped region, wherein the deep first type heavily doped region and the first type lightly doped region respectively belong to opposite types, and wherein the deep first type heavily doped region is coupled to the first type heavily doped region.
    Type: Application
    Filed: August 2, 2010
    Publication date: February 2, 2012
    Applicant: AMAZING MICROELECTRONIC CORP.
    Inventors: Kun-Hsien LIN, Zi-Ping CHEN, Che-Hao CHUANG, Ryan Hsin-Chin JIANG
  • Publication number: 20120018778
    Abstract: A new ESD protection device with an integrated-circuit vertical transistor structure is disclosed, which includes a heavily doped p-type substrate (P+ substrate), a n-type well (N well) in the P+ substrate, a heavily doped p-type diffusion (P+ diffusion) in the N well, a heavily doped n-type diffusion (N+ diffusion) in the N well, and a p-type well (P well) surrounding the N well in the P+ substrate. A bond pad is connected to both the P+ and N+ diffusions, and a ground is coupled to the P+ substrate. Another P+ diffusion is implanted in the N well or another N+ diffusion is implanted in the P well to form a Zener diode, which behaves as a trigger for the PNP transistor when a positive ESD zaps. A parasitic diode is formed at the junction between the P+ substrate and the N well, to bypass a negative ESD stress on the bond pad.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 26, 2012
    Applicant: AMAZING MICROELECTRONIC CORP.
    Inventors: ZI-PING CHEN, Kun-Hsien Lin, Ryan Hsin-Chin Jiang
  • Publication number: 20120012974
    Abstract: A lateral transient voltage suppressor for low-voltage applications is disclosed. The suppressor comprises an N-type heavily doped substrate and at least two clamp diode structures horizontally arranged in the N-type heavily doped substrate. Each clamp diode structure further comprises a clamp well arranged in the N-type heavily doped substrate and having a first heavily doped area and a second heavily doped area. The first and second heavily doped areas respectively belong to opposite types. There is a plurality of deep isolation trenches arranged in the N-type heavily doped substrate and having a depth greater than depth of the clamp well. The deep isolation trenches can separate each clamp well. The present invention avoids the huge leakage current to be suitable for low-voltage application.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 19, 2012
    Inventors: Che-Hao CHUANG, Kun-Hsien Lin, Ryan Hsin-Chin Jiang
  • Publication number: 20120012973
    Abstract: A lateral transient voltage suppressor with ultra low capacitance is disclosed. The suppressor comprises a first type substrate and at least one diode cascade structure arranged in the first type substrate. The cascade structure further comprises at least one second type lightly doped well and at least one first type lightly doped well, wherein there are two heavily doped areas arranged in the second type lightly doped well and the first type lightly doped well. The cascade structure neighbors a second type well, wherein there are three heavily doped areas arranged in the second type well. The suppressor further comprises a plurality of deep isolation trenches arranged in the first type substrate and having a depth greater than depths of the second type lightly doped well, the second type well and the first type lightly doped well. Each doped well is isolated by trenches.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 19, 2012
    Inventors: Che-Hao Chuang, Kun-Hsien Lin, Ryan Hsin-Chin Jiang
  • Publication number: 20120014027
    Abstract: A transient voltage suppressor (TVS) for multiple pin assignments is disclosed. The suppressor comprises at least two cascade-diode circuits in parallel to each other and an electrostatic-discharge clamp element in parallel to each cascade-diode circuit and connected with a low voltage. One cascade-diode circuit is connected with a high voltage, and the other cascade-diode circuits are respectively connected with I/O pins. Each cascade-diode circuit further comprises a first diode and a second diode cascaded to the first diode, wherein a node between the first diode and the second diode is connected with the high voltage or the one I/O pin. The design of the present invention can meet several bounding requirements. It is flexible different pin assignments of TVS parts.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 19, 2012
    Inventors: Kun-Hsien LIN, Che-Hao Chuang, Ryan Hsin-Chin Jiang
  • Patent number: 8067952
    Abstract: An ESD detection circuit for detecting a level of an ESD voltage on a power rail is provided. The ESD detection circuit includes a resistive component, a diode unit, and a controller. The resistive component is coupled between a detection node and a ground node corresponding to the power rail. The diode unit is coupled between the power rail and the detection node in a forward direction toward the power rail. The controller, coupled to the detection node, is used for determining the level of the ESD voltage based on the voltage of the detection node and the breakdown voltage of the diode unit.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: November 29, 2011
    Assignee: Amazing Microelectronic Corp.
    Inventors: Ming-Dou Ker, Wen-Yi Chen, Hsin-Chin Jiang
  • Patent number: 8049247
    Abstract: The present invention discloses an asymmetric bidirectional silicon-controlled rectifier, which comprises: a second conduction type substrate; a first conduction type undoped epitaxial layer formed on the substrate; a first well and a second well both formed inside the undoped epitaxial layer and separated by a portion of the undoped epitaxial layer; a first buried layer formed in a junction between the first well and the substrate; a second buried layer formed in a junction between the second well and the substrate; a first and a second semiconductor area with opposite conduction type both formed inside the first well; a third and a fourth semiconductor area with opposite conduction type both formed inside the second well, wherein the first and second semiconductor areas are connected to the anode of the silicon-controlled rectifier, and the third and fourth semiconductor areas are connected to the cathode of the silicon-controlled rectifier.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: November 1, 2011
    Assignee: Amazing Microelectronic Corp.
    Inventors: Tang-Kuei Tseng, Che-Hao Chuang, Ryan Hsin-Chin Jiang, Ming-Dou Ker
  • Patent number: 7989923
    Abstract: A bidirectional transient voltage suppression device is disclosed. The bi-directional transient voltage suppression device comprises a semiconductor die. The semiconductor die has a multi-layer structure comprising a semiconductor substrate of a first conductivity type, a buried layer of a second conductivity type, an epitaxial layer, and five diffused regions. The buried layer and the semiconductor substrate form a first semiconductor junction. The first diffused region of the second conductivity type and the semiconductor substrate form a second semiconductor junction. The fourth diffused region of the first conductivity type and the third diffused region of the second conductivity type form a third semiconductor junction. The fifth diffused region of the first conductivity type and the second diffused region of the second conductivity type form a fourth semiconductor junction.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: August 2, 2011
    Assignee: Amazing Microelectronic Corp.
    Inventors: Tang-Kuei Tseng, Kun-Hsien Lin, Hsin-Chin Jiang
  • Patent number: 7974053
    Abstract: An ESD protection circuit for a differential I/O pair is provided. The circuit includes an ESD detection circuit, a discharge device, and four diodes. The first diode is coupled between the first I/O pin and the discharge device in a forward direction toward the discharge device. The second diode is coupled between the second I/O pin and the discharge device in a forward direction toward the second I/O pin. The third diode is coupled between the discharge device and the positive power line in a forward direction toward the positive power line. The fourth diode is coupled between the discharge device and the negative power line in a forward direction toward the discharge device. Via an output end, the ESD detection circuit triggers the discharge device during ESD events.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: July 5, 2011
    Assignee: Amazing Microelectronic Corp
    Inventors: Ming-Dou Ker, Yuan-Wen Hsiao, Hsin-Chin Jiang
  • Patent number: 7915638
    Abstract: The present invention discloses a symmetric bidirectional silicon-controlled rectifier, which comprises: a substrate; a buried layer formed on the substrate; a first well, a middle region and a second well, which are sequentially formed on the buried layer side-by-side; a first semiconductor area and a second semiconductor area both formed inside the first well; a third semiconductor area formed in a junction between the first well and the middle region, wherein a first gate is formed over a region between the second and third semiconductor areas; a fourth semiconductor area and a fifth semiconductor area both formed inside the second well; a sixth semiconductor area formed in a junction between the second well and the middle region, wherein a second gate is formed over a region between the fifth and sixth semiconductor areas.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: March 29, 2011
    Assignee: Amazing Microelectronic Corp.
    Inventors: Tang-Kuei Tseng, Che-Hao Chuang, Ryan Hsin-Chin Jiang, Ming-Dou Ker
  • Patent number: 7889470
    Abstract: An ESD protection circuit is provided. The circuit includes a discharging component, a diode, and an ESD detection circuit. The discharging component is coupled between an input/output pad and a first power line of an IC. The diode is coupled between the input/output pad and a second power line of the IC in a forward direction toward the second power line. The ESD detection circuit includes a capacitor, a resistor, and a triggering component. The capacitor and the resistor are formed in series and coupled between the first power line and the second power line. The triggering component has a positive power end coupled to the input/output pad and a negative power end coupled to the first power line. An input of the triggering component is coupled to a node between the capacitor and the resistor.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: February 15, 2011
    Assignee: Amazing Microelectronic Corp.
    Inventors: Ming-Dou Ker, Yuan-Wen Hsiao, Ryan Hsin-Chin Jiang
  • Publication number: 20100315754
    Abstract: The invention discloses a transient voltage detection circuit suitable for an electronic system. The electronic system includes a high voltage line and a low voltage line. The transient voltage detection circuit includes at least one detection circuit and a judge module. Each detection circuit includes a P-typed transistor and/or an N-typed transistor, a capacitor and a detection node. The transistor is coupled with the capacitor, and the detection node is located between the transistor and the capacitor. The judge module is coupled to each of the detection nodes. The judge module generates a judgment according to voltage levels of the detection nodes. Accordingly, the transient voltage detection circuit is formed. The electronic system may selectively execute a protective action according to the judgment.
    Type: Application
    Filed: November 24, 2009
    Publication date: December 16, 2010
    Applicant: AMAZING MICROELECTRONIC CORP.
    Inventors: Ming-Dou Ker, Wen-Yi Chen, Hsin-Chin Jiang
  • Patent number: RE43215
    Abstract: The present invention is directed to an electrostatic discharge (ESD) device with an improved ESD robustness for protecting output buffers in I/O cell libraries. The ESD device according to the present invention uses a novel I/O cell layout structure for implementing a turn-on restrained method that reduces the turn-on speed of an ESD guarded MOS transistor by adding a pick-up diffusion region and/or varying channel lengths in the layout structure.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: February 28, 2012
    Inventors: Ming-Dou Ker, Jeng-Jie Peng, Hsin-Chin Jiang