Patents by Inventor Hsuan Lee

Hsuan Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11495471
    Abstract: A semiconductor substrate has an exposed surface having a compositionally uniform metal, and an embedded surface having the metal and an oxide. The exposed surface is polished using a first slurry including a first abrasive and a first amine-based alkaline until the embedded surface is exposed. The embedded surface is polished using a second slurry including a second abrasive and a second amine-based alkaline. The second abrasive is different from the first abrasive. The second amine-based alkaline is different from the first amine-based alkaline. The metal and the oxide each has a first and a second removal rate in the first slurry, respectively, and a third and fourth removal rate in the second slurry, respectively. A ratio of the first removal rate to the second removal rate is greater than 30:1, and a ratio of the third removal rate to the fourth removal rate is about 1:0.5 to about 1:2.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: November 8, 2022
    Inventors: An-Hsuan Lee, Chun-Hung Liao, Chen-Hao Wu, Shen-Nan Lee, Teng-Chun Tsai, Huang-Lin Chao
  • Patent number: 11482450
    Abstract: Methods of forming a slurry and methods of performing a chemical mechanical polishing (CMP) process utilized in manufacturing semiconductor devices, as described herein, may be performed on semiconductor devices including integrated contact structures with ruthenium (Ru) plug contacts down to a semiconductor substrate. The slurry may be formed by mixing a first abrasive, a second abrasive, and a reactant with a solvent. The first abrasive may include a first particulate including titanium dioxide (TiO2) particles and the second abrasive may include a second particulate that is different from the first particulate. The slurry may be used in a CMP process for removing ruthenium (Ru) materials and dielectric materials from a surface of a workpiece resulting in better WiD loading and planarization of the surface for a flat profile.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: October 25, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia Hsuan Lee, Chun-Wei Hsu, Chia-Wei Ho, Chi-Hsiang Shen, Li-Chieh Wu, Jian-Ci Lin, Chi-Jen Liu, Yi-Sheng Lin, Yang-Chun Cheng, Liang-Guang Chen, Kuo-Hsiu Wei, Kei-Wei Chen
  • Publication number: 20220336367
    Abstract: A semiconductor device includes a source/drain component of a transistor. A source/drain contact is disposed over the source/drain component. A source/drain via is disposed over the source/drain contact. The source/drain via contains copper. A first liner at least partially surrounds the source/drain via. A second liner at least partially surrounds the first liner. The first liner and the second liner are disposed between the source/drain contact and the source/drain via. The first liner and the second liner have different material compositions.
    Type: Application
    Filed: September 3, 2021
    Publication date: October 20, 2022
    Inventors: Chen-Hung Tsai, Chao-Hsun Wang, Pei-Hsuan Lee, Chih-Chien Chi, Ting-Kui Chang, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20220328309
    Abstract: Embodiments disclosed herein relate generally to capping processes and structures formed thereby. In an embodiment, a conductive feature, formed in a dielectric layer, has a metallic surface, and the dielectric layer has a dielectric surface. The dielectric surface is modified to be hydrophobic by performing a surface modification treatment. After modifying the dielectric surface, a capping layer is formed on the metallic surface by performing a selective deposition process. In another embodiment, a surface of a gate structure is exposed through a dielectric layer. A capping layer is formed on the surface of the gate structure by performing a selective deposition process.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 13, 2022
    Inventors: Chih-Chien Chi, Pei-Hsuan Lee, Hung-Wen Su, Hsiao-Kuan Wei, Jui-Fen Chien, Hsin-Yun Hsu
  • Publication number: 20220328344
    Abstract: A semiconductor structure includes a fin structure formed over a substrate. The structure also includes a gate structure formed across the fin structure. The structure also includes source/drain epitaxial structures formed on opposite sides of the gate structure. The structure also includes an inter-layer dielectric (ILD) structure formed over the gate structure. The structure also includes a contact blocking structure formed through the ILD structure over the source/drain epitaxial structure. A lower portion of the contact blocking structure is surrounded by an air gap, and the air gap is covered by a portion of the ILD structure.
    Type: Application
    Filed: April 8, 2021
    Publication date: October 13, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Ta YU, Kai-Hsuan LEE, Sai-Hooi YEONG, Yen-Chieh HUANG, Feng-Cheng YANG
  • Publication number: 20220320094
    Abstract: A method of forming a semiconductor device includes: forming a gate structure over a fin that protrudes above a substrate, the gate structure being surrounded by a first interlayer dielectric (ILD) layer; forming a trench in the first ILD layer adjacent to the fin; filling the trench with a first dummy material; forming a second ILD layer over the first ILD layer and the first dummy material; forming an opening in the first ILD layer and the second ILD layer, the opening exposing a sidewall of the first dummy material; lining sidewalls of the opening with a second dummy material; after the lining, forming a conductive material in the opening; after forming the conductive material, removing the first and the second dummy materials from the trench and the opening, respectively; and after the removing, sealing the opening and the trench by forming a dielectric layer over the second ILD layer.
    Type: Application
    Filed: May 20, 2021
    Publication date: October 6, 2022
    Inventors: Kai-Hsuan Lee, Sai-Hooi Yeong, Chi On Chui
  • Publication number: 20220319890
    Abstract: Apparatus and methods for handling die carriers are disclosed. In one example, a disclosed apparatus includes: a load port configured to load a die carrier operable to hold a plurality of dies into a processing tool; and a lane changer coupled to the load port and configured to move at least one die in the die carrier to an input of the processing tool and transfer the at least one die into the processing tool for processing the at least one die.
    Type: Application
    Filed: June 24, 2022
    Publication date: October 6, 2022
    Inventors: Tsung-Sheng KUO, Kai-Chieh HUANG, Wei-Ting HSIAO, Yang-Ann CHU, I-Lun YANG, Hsuan LEE
  • Publication number: 20220319914
    Abstract: Small sized and closely pitched features can be formed by patterning a layer to have holes therein and then expanding the layer so that the holes shrink. If the expansion is sufficient to pinch off the respective holes, multiple holes can be formed from one larger hole. Holes smaller and of closer pitch than practical or possible may be obtained in this way. One process for expanding the layer includes implanting a dopant species having a larger average atomic spacing than does the material of the layer.
    Type: Application
    Filed: May 24, 2021
    Publication date: October 6, 2022
    Inventors: Kai-Hsuan Lee, Sai-Hooi Yeong, Chi On Chui
  • Patent number: 11458715
    Abstract: A method for preparing a bifunctional film, including: (a) drying a first polymer solution to form a film to form an anti-adhesion layer; and (b) drying a second polymer solution over the anti-adhesion layer to form a film to form an attachment layer. The first polymer solution includes a first hydrophobic solution and a first hydrophilic solution, and in the first polymer solution, the weight ratio of the solute of the first hydrophobic solution to the solute of the first hydrophilic solution is 1:0.01-1. Moreover, the second polymer solution consists of a second hydrophilic solution.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: October 4, 2022
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hsin-Hsin Shen, Yu-Chi Wang, Ming-Chia Yang, Yu-Bing Liou, Wei-Hong Chang, Yun-Han Lin, Hsin-Yi Hsu, Yun-Chung Teng, Chia-Jung Lu, Yi-Hsuan Lee, Jian-Wei Lin, Kun-Mao Kuo, Ching-Mei Chen
  • Patent number: 11459190
    Abstract: In certain embodiments, a system includes: a source lane configured to move a first die container between a load port and a source lane staging area; an inspection sensor configured to produce a sensor result based on a die on the first die container; a pass target lane configured to move a second die container between a pass target lane out port and a pass target lane staging area; a fail target lane configured to move a third die container between a fail target lane out port and a fail target lane staging area; and a conveyor configured to move the die from the first die container at the source lane staging area to either the second die container at the pass target lane staging area or the fail target lane staging area based on the sensor result.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: October 4, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Sheng Kuo, Chih-Hung Huang, Yi-Fam Shiu, Chueng-Jen Wang, Hsuan Lee, Jiun-Rong Pai
  • Publication number: 20220304562
    Abstract: An endoscope includes a control module, a lens module, a cover, and an encapsulation. The lens module is electrically connected to the control module. The cover has a transparent area, and the cover covers the lens module in a sealing manner. The encapsulation encapsulates the cover and the control module, and exposes the transparent area, such that the encapsulation serves as a shell of the endoscope.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 29, 2022
    Applicant: Pro-Sight Medical Technology CORP.,LTD.
    Inventors: Sheng Wen Huang, Chen-Chung Hsu, Ya-Hsuan Lee
  • Publication number: 20220308593
    Abstract: Transfer apparatuses and methods thereof are provided. First, a laser ranging unit is used to perform a first scanning ranging operation for an environment to obtain a laser scanning ranging result of the environment. Then, a displacement calculation unit is used to detect displacement information of a transfer apparatus. According to the laser scanning ranging result and the displacement information, map information of the environment is established and positioning information of the transfer apparatus in the environment is determined, wherein the map information includes information of a charging device. The map information and the positioning information of the transfer apparatus is transmitted to an application device via a connection interface.
    Type: Application
    Filed: March 1, 2022
    Publication date: September 29, 2022
    Inventors: Chien-Heng Yu, Chih-Hui Chen, Chuan-Kuei Lu, Chih-Hsuan Lee
  • Publication number: 20220310445
    Abstract: In an embodiment, a device includes: a source/drain region adjoining a channel region of a substrate; a contact etch stop layer on the source/drain region; a first source/drain contact extending through the contact etch stop layer, the first source/drain contact connected to the source/drain region; a gate structure on the channel region; a gate contact connected to the gate structure; and a contact spacer around the gate contact, where the contact spacer, the gate structure, the contact etch stop layer, and the substrate collectively define a void between the gate structure and the first source/drain contact.
    Type: Application
    Filed: May 20, 2021
    Publication date: September 29, 2022
    Inventors: Kai-Hsuan Lee, Sai-Hooi Yeong, Chi On Chui
  • Patent number: 11456295
    Abstract: A semiconductor device includes a gate stack, an epitaxy structure, a first spacer, a second spacer, and a dielectric residue. The gate stack is over a substrate. The epitaxy structure is formed raised above the substrate. The first spacer is on a sidewall of the gate stack. The first spacer and the epitaxy structure define an air gap therebetween. The second spacer seals the air gap between the first spacer and the epitaxy structure. The dielectric residue is in the air gap and has an upper portion and a lower portion under the upper portion. The upper portion of the dielectric residue has higher etch resistance to phosphoric acid than that of the lower portion of the dielectric residue.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: September 27, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bo-Yu Lai, Kai-Hsuan Lee, Wei-Yang Lee, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 11456383
    Abstract: A device includes a fin extending from a semiconductor substrate; a gate stack over the fin; a first spacer on a sidewall of the gate stack; a source/drain region in the fin adjacent the first spacer; an inter-layer dielectric layer (ILD) extending over the gate stack, the first spacer, and the source/drain region, the ILD having a first portion and a second portion, wherein the second portion of the ILD is closer to the gate stack than the first portion of the ILD; a contact plug extending through the ILD and contacting the source/drain region; a second spacer on a sidewall of the contact plug; and an air gap between the first spacer and the second spacer, wherein the first portion of the ILD extends across the air gap and physically contacts the second spacer, wherein the first portion of the ILD seals the air gap.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: September 27, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Kai-Hsuan Lee, I-Hsieh Wong, Cheng-Yu Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Syun-Ming Jang, Meng-Han Chou
  • Publication number: 20220301944
    Abstract: A high atomic number material is applied to one or more surfaces of a semiconductor structure of a wafer. The one or more surfaces are at a depth different from a depth of a surface of the wafer. An electron beam is scanned over the semiconductor structure to cause a backscattered electron signal to be collected at a collector. A profile scan of the semiconductor structure is generated based on an intensity of the backscattered electron signal, at the collector, resulting from the high atomic number material. The high atomic number material increases the intensity of the backscattered electron signal for the one or more surfaces of the semiconductor structure such that contrast in the profile scan is increased. The increased contrast of the profile scan enables accurate critical dimension measurements of the semiconductor structure.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 22, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Pei-Hsuan LEE, Hung-Ming CHEN, Kuang-Shing CHEN, Yu-Hsiang CHENG, Xiaomeng CHEN
  • Publication number: 20220293528
    Abstract: A method of manufacturing an interconnect structure includes forming an opening through a dielectric layer. The opening exposes a top surface of a first conductive feature. The method further includes forming a barrier layer on sidewalls of the opening, passivating the exposed top surface of the first conductive feature with a treatment process, forming a liner layer over the barrier layer, and filling the opening with a conductive material. The liner layer may include ruthenium.
    Type: Application
    Filed: April 28, 2021
    Publication date: September 15, 2022
    Inventors: Shu-Cheng Chin, Ming-Yuan Gao, Chen-Yi Niu, Yen-Chun Lin, Hsin-Ying Peng, Chih-Hsiang Chang, Pei-Hsuan Lee, Chi-Feng Lin, Chih-Chien Chi, Hung-Wen Su
  • Publication number: 20220293505
    Abstract: A package structure includes a carrier substrate, a die, and a first redistribution structure. The carrier substrate has a first surface and a second surface opposite to the first surface. The carrier substrate includes an insulating body and through carrier vias (TCV) embedded in the insulating body. The die is disposed over the firs surface of the carrier substrate. The die is electrically connected to the TCVs. The first redistribution structure is disposed on the second surface of the carrier substrate.
    Type: Application
    Filed: March 11, 2021
    Publication date: September 15, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Yueh Wu, Chien-Ling Hwang, Jen-Chun Liao, Ching-Hua Hsieh, Pei-Hsuan Lee, Chia-Hung Liu
  • Publication number: 20220291376
    Abstract: An electronic device includes a plurality of radars and at least one processor. Each of the radars includes at least one transmitting antenna and a plurality of receiving antennas arranged as a two-dimensional array antenna. The processor converts the RF signal received by the receiving antennas into a ranging profile that records the distance between each of the receiving antennas and the target and the receiving intensity corresponding to the distance. The processor generates a voxel profile to indicate the relationship between the distance and the receiving intensity in three-dimensional space. The processor performs a point generation algorithm to generate a plurality of points in three-dimensional space according to the voxel profile and the receiving intensity threshold. The processor performs a cluster analysis algorithm to identify a plurality of target points corresponding to the target among the points to obtain the position of the target.
    Type: Application
    Filed: July 14, 2021
    Publication date: September 15, 2022
    Inventors: Tsung-Ying HSIEH, Chi-Hsuan LEE
  • Patent number: 11444002
    Abstract: A package structure includes a bottom plate, a semiconductor package, a top plate, a screw and an anti-loosening coating. The semiconductor package is disposed over the bottom plate. The top plate is disposed over the semiconductor package, and includes an internal thread in a screw hole of the top plate. The screw penetrates through the bottom plate, the semiconductor package and the top plate, and includes an external thread. The external thread of the screw is engaged to the internal thread of the top plate, and the anti-loosening coating is adhered between the external thread and the internal thread.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: September 13, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Chia Lai, Chen-Hua Yu, Chung-Shi Liu, Hsiao-Chung Liang, Hao-Yi Tsai, Chien-Ling Hwang, Kuo-Lung Pan, Pei-Hsuan Lee, Tin-Hao Kuo, Chih-Hsuan Tai