Patents by Inventor Hsueh-Chang Sung

Hsueh-Chang Sung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170133286
    Abstract: A semiconductor structure includes a device region and a test region. In the device region, first fin spacers cover sidewalls of a first fin structure and have a first height, and a first epitaxy structure is disposed in the first fin structure, which a portion of the first epitaxy structure is above the first fin spacers and having a first width. In the test region, second fin spacers cover sidewalls of the second fin structure and have a second height, and the second height is greater than the first height. A second epitaxy structure is disposed in the second fin structure, and a portion of the second epitaxy structure is above the second fin spacers and having a second width, which the second width is less than the first width.
    Type: Application
    Filed: November 6, 2015
    Publication date: May 11, 2017
    Inventors: Hsueh-Chang SUNG, Chih-Chiang CHANG, Kun-Mu LI
  • Publication number: 20170092768
    Abstract: A semiconductor structure and a method of fabricating the semiconductor structure are disclosed herein. The semiconductor structure includes a substrate, a strain-inducing layer and an epitaxy structure. The strain-inducing layer is disposed on the substrate, and the epitaxy structure is embedded in the strain-inducing layer and not in contact with the substrate.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 30, 2017
    Inventors: Hsueh-Chang SUNG, Chih-Chiang CHANG, Kun-Mu LI
  • Patent number: 9601619
    Abstract: An integrated circuit structure include a semiconductor substrate, a gate stack over the semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A silicon germanium region is disposed in the opening, wherein the silicon germanium region has a first p-type impurity concentration. A silicon cap substantially free from germanium is overlying the silicon germanium region. The silicon cap has a second p-type impurity concentration greater than the first p-type impurity concentration.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: March 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Chang Sung, Tsz-Mei Kwok, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li
  • Patent number: 9583483
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and a silicon germanium region extending into the semiconductor substrate and adjacent to the gate stack. The silicon germanium region has a top surface, with a center portion of the top surface recessed from edge portions of the top surface to form a recess. The edge portions are on opposite sides of the center portion.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: February 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kun-Mu Li, Tsz-Mei Kwok, Hsueh-Chang Sung, Chii-Horng Li, Tze-Liang Lee
  • Patent number: 9515187
    Abstract: An integrated circuit structure includes a fin field-effect transistor (FinFET) including a semiconductor fin over and adjacent to insulation regions; and a source/drain region over the insulation regions. The source/drain region includes a first and a second semiconductor region. The first semiconductor region includes silicon and an element selected from the group consisting of germanium and carbon, wherein the element has a first atomic percentage in the first semiconductor region. The first semiconductor region has an up-slant facet and a down-slant facet. The second semiconductor region includes silicon and the element. The element has a second atomic percentage lower than the first atomic percentage. The second semiconductor region has a first portion on the up-slant facet and has a first thickness. A second portion of the second semiconductor region, if any, on the down-slant facet has a second thickness smaller than the first thickness.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: December 6, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsz-Mei Kwok, Chien-Chang Su, Kuan-Yu Chen, Hsueh-Chang Sung, Hsien-Hsin Lin
  • Patent number: 9502561
    Abstract: An embodiment is a semiconductor device, comprising: a substrate; a plurality of fin structures disposed on the substrate; a plurality of first strained materials disposed on each of the plurality of the fin structures; a plurality of cap layers individually formed on each of the plurality of first strained materials, wherein at least two cap layers are connected to each other; a second strained material disposed on the at least two cap layers which are connected to each other.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: November 22, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Chiang Chang, Hsueh-Chang Sung, Kun-Mu Li, Ming-Hua Yu
  • Publication number: 20160254381
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is overlying the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage higher than the first germanium percentage. A metal silicide region is over and in contact with the second silicon germanium region.
    Type: Application
    Filed: May 11, 2016
    Publication date: September 1, 2016
    Inventors: Tsz-Mei Kwok, Kun-Mu Li, Hsueh-Chang Sung, Chii-Horng Li, Tze-Liang Lee
  • Publication number: 20160254364
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage higher than the first germanium percentage. A third silicon germanium region is over the second silicon germanium region, wherein the third silicon germanium region has a third germanium percentage lower than the second germanium percentage.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Tsz-Mei Kwok, Kun-Mu Li, Hsueh-Chang Sung, Chii-Horng Li, Tze-Liang Lee
  • Publication number: 20160218104
    Abstract: A fin field device structure and method for forming the same are provided. The FinFET device structure includes a substrate and a fin structure extending from the substrate. The FinFET device structure also includes an anti-punch through implant (APT) region formed in the fin structure and a barrier layer formed on the APT region. The barrier layer has a middle portion and a peripheral portion, and the middle portion is higher than the peripheral portion. The FinFET device structure further includes an epitaxial layer formed on the barrier layer.
    Type: Application
    Filed: January 28, 2015
    Publication date: July 28, 2016
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Yao WEN, Sheng-Chen WANG, Sai-Hooi YEONG, Hsueh-Chang SUNG, Ya-Yun CHENG
  • Patent number: 9373695
    Abstract: The present disclosure provides a method of fabricating a semiconductor device that includes providing a semiconductor substrate, forming a gate structure over the substrate, forming a material layer over the substrate and the gate structure, implanting Ge, C, P, F, or B in the material layer, removing portions of the material layer overlying the substrate at either side of the gate structure, forming recesses in the substrate at either side of the gate structure, and depositing a semiconductor material in the recesses by an expitaxy process.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: June 21, 2016
    Assignee: Taiwan Semiconductor Manufacturing Compay, Ltd.
    Inventors: Kuan-Yu Chen, Hsien-Hsin Lin, Chun-Feng Nieh, Hsueh-Chang Sung, Chien-Chang Su, Tsz-Mei Kwok
  • Patent number: 9362360
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is overlying the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage higher than the first germanium percentage. A metal silicide region is over and in contact with the second silicon germanium region.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: June 7, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsz-Mei Kwok, Kun-Mu Li, Hsueh-Chang Sung, Chii-Horng Li, Tze-Liang Lee
  • Publication number: 20160155819
    Abstract: A transistor device includes a gate structure disposed over a channel region of a semiconductor substrate. A source/drain recess is arranged in the semiconductor substrate alongside the gate structure. A doped silicon-germanium (SiGe) region is disposed within the source/drain recess and has a doping type which is opposite to that of the channel. An un-doped SiGe region is also disposed within the source/drain recess. The un-doped SiGe region underlies the doped SiGe region and comprises different germanium concentrations at different locations within the source/drain recess.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 2, 2016
    Inventors: Tsz-Mei Kwok, Hsueh-Chang Sung, Kun-Mu Li, Chii-Horng Li, Tze-Liang Lee
  • Patent number: 9356150
    Abstract: The present disclosure provides a method of fabricating a semiconductor device that includes forming a plurality of fins, the fins being isolated from each other by an isolation structure, forming a gate structure over a portion of each fin; forming spacers on sidewalls of the gate structure, respectively, etching a remaining portion of each fin thereby forming a recess, epitaxially growing silicon to fill the recess including incorporating an impurity element selected from the group consisting of germanium (Ge), indium (In), and carbon (C), and doping the silicon epi with an n-type dopant.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: May 31, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Chang Su, Hsien-Hsin Lin, Tsz-Mei Kwok, Kuan-Yu Chen, Hsueh-Chang Sung, Yi-Fang Pai
  • Patent number: 9337337
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage higher than the first germanium percentage. A third silicon germanium region is over the second silicon germanium region, wherein the third silicon germanium region has a third germanium percentage lower than the second germanium percentage.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: May 10, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsz-Mei Kwok, Kun-Mu Li, Hsueh-Chang Sung, Chii-Horng Li, Tze-Liang Lee
  • Publication number: 20160087078
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region. The second silicon germanium region comprises a portion in the opening. The second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap substantially free from germanium is over the second silicon germanium region.
    Type: Application
    Filed: December 1, 2015
    Publication date: March 24, 2016
    Inventors: Chii-Horng Li, Hsueh-Chang Sung, Kun-Mu Li, Tze-Liang Lee, Tsz-Mei Kwok
  • Patent number: 9293537
    Abstract: A method for forming a high performance strained source-drain structure includes forming a gate structure on a substrate and forming a pocket implant region proximate to the gate structure. Spacers are formed adjacent to the gate structure. A dry etch forms a recess with a first contour; a wet etch enlarge the recess to a second contour; and a thermal etch enlarges the recess to a third contour. The source-drain structure is then formed in the recess having the third contour.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: March 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Chang Sung, Ming-Huan Tsai, Hsien-Hsin Lin, Chun-Fai Cheng, Wei-Han Fan
  • Patent number: 9287398
    Abstract: A transistor device includes a gate structure disposed over a channel region of a semiconductor substrate. A source/drain recess is arranged in the semiconductor substrate alongside the gate structure. A doped silicon-germanium (SiGe) region is disposed within the source/drain recess and has a doping type which is opposite to that of the channel. An un-doped SiGe region is also disposed within the source/drain recess. The un-doped SiGe region underlies the doped SiGe region and comprises different germanium concentrations at different locations within the source/drain recess.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: March 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsz-Mei Kwok, Hsueh-Chang Sung, Kun-Mu Li, Chii-Horng Li, Tze-Liang Lee
  • Publication number: 20150364604
    Abstract: The present disclosure provides a method of fabricating a semiconductor device that includes forming a plurality of fins, the fins being isolated from each other by an isolation structure, forming a gate structure over a portion of each fin; forming spacers on sidewalls of the gate structure, respectively, etching a remaining portion of each fin thereby forming a recess, epitaxially growing silicon to fill the recess including incorporating an impurity element selected from the group consisting of germanium (Ge), indium (In), and carbon (C), and doping the silicon epi with an n-type dopant.
    Type: Application
    Filed: August 24, 2015
    Publication date: December 17, 2015
    Inventors: Chien-Chang Su, Hsien-Hsin Lin, Tsz-Mei Kwok, Kuan-Yu Chen, Hsueh-Chang Sung, Yi-Fang Pai
  • Patent number: 9209175
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region. The second silicon germanium region comprises a portion in the opening. The second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap substantially free from germanium is over the second silicon germanium region.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: December 8, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Chang Sung, Tsz-Mei Kwok, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li
  • Patent number: 9117905
    Abstract: The present disclosure provides a method of fabricating a semiconductor device that includes forming a plurality of fins, the fins being isolated from each other by an isolation structure, forming a gate structure over a portion of each fin; forming spacers on sidewalls of the gate structure, respectively, etching a remaining portion of each fin thereby forming a recess, epitaxially growing silicon to fill the recess including incorporating an impurity element selected from the group consisting of germanium (Ge), indium (In), and carbon (C), and doping the silicon epi with an n-type dopant.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: August 25, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Chang Su, Hsien-Hsin Lin, Tsz-Mei Kwok, Kuan-Yu Chen, Hsueh-Chang Sung, Yi-Fang Pai