Patents by Inventor Hung-Wen Su

Hung-Wen Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230029867
    Abstract: A blocking material is selectively deposited on a bottom surface of a back end of line (BEOL) conductive structure such that a barrier layer is selectively deposited on sidewalls of the BEOL conductive structure but not the bottom surface. The blocking material is etched such that copper from a conductive structure underneath is exposed, and a ruthenium layer is deposited on the barrier layer but less ruthenium is deposited on the exposed copper. Accordingly, the barrier layer prevents diffusion of metal ions from the BEOL conductive structure and is substantially absent from the bottom surface as compared to the sidewalls in order to reduce contact resistance. Additionally, the ruthenium layer reduces surface roughness within the BEOL conductive structure and is thinner at the bottom surface as compared to the sidewalls in order to reduce contact resistance.
    Type: Application
    Filed: February 25, 2022
    Publication date: February 2, 2023
    Inventors: Shu-Cheng CHIN, Ming-Yuan GAO, Chun-Kai CHANG, Chen-Yi NIU, Hsin-Ying PENG, Chi-Feng LIN, Hung-Wen SU
  • Patent number: 11552018
    Abstract: A semiconductor structure with an improved metal structure is described. The semiconductor structure can include a substrate having an upper surface, an interconnect layer over the upper surface, and an additional structure deposited over the interconnect layer. The interconnect layer can include a patterned seed layer over the substrate, at least two metal lines over the seed layer, and a dielectric material between adjacent metal lines. A barrier layer can be deposited over the at least two metal lines. Methods of making the semiconductor structures are also described.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: January 10, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Jiun Liu, Chen-Yuan Kao, Hung-Wen Su, Ming-Hsing Tsai, Syun-Ming Jang
  • Patent number: 11535950
    Abstract: A method of plating a metal layer on a work piece includes exposing a surface of the work piece to a plating solution, and supplying a first voltage at a negative end of a power supply source to an edge portion of the work piece. A second voltage is supplied to an inner portion of the work piece, wherein the inner portion is closer to a center of the work piece than the edge portion. A positive end of the power supply source is connected to a metal plate, wherein the metal plate and the work piece are spaced apart from each other by, and are in contact with, the plating solution.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: December 27, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Yuan Kao, Hung-Wen Su, Minghsing Tsai
  • Patent number: 11527476
    Abstract: A semiconductor structure and a method of forming the same are provided. A method includes depositing a dielectric layer over a conductive feature. The dielectric layer is patterned to form an opening therein. The opening exposes a first portion of the conductive feature. A first barrier layer is deposited on a sidewall of the opening. The first portion of the conductive feature remains exposed at the end of depositing the first barrier layer.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yao-Min Liu, Chia-Pang Kuo, Chien Chung Huang, Chih-Yi Chang, Ya-Lien Lee, Chun-Chieh Lin, Hung-Wen Su, Ming-Hsing Tsai
  • Patent number: 11527411
    Abstract: An interconnect structure and a method of forming an interconnect structure are disclosed. The interconnect structure includes a conductive plug over a substrate; a conductive feature over the conductive plug, wherein the conductive feature has a first sidewall, a second sidewall facing the first sidewall, and a bottom surface; and a carbon-containing barrier layer having a first portion along the first sidewall of the conductive feature, a second portion along the second sidewall of the conductive feature, and a third portion along the bottom surface of the conductive feature.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Rueijer Lin, Ya-Lien Lee, Chun-Chieh Lin, Hung-Wen Su
  • Publication number: 20220384338
    Abstract: A method of making a semiconductor device includes etching an insulating layer to form a first opening and a second opening. The method further includes depositing a conductive material in the first opening. The method further includes performing a surface modification process on the conductive material. The method further includes depositing, after the surface modification process, a first liner layer in the second opening, wherein the first liner layer extends over the conductive material and the insulating layer. The method further includes depositing a conductive fill over the first liner layer, wherein the conductive fill includes a different material from the conductive material.
    Type: Application
    Filed: August 10, 2022
    Publication date: December 1, 2022
    Inventors: Shu-Cheng CHIN, Yao-Min LIU, Hung-Wen SU, Chih-Chien CHI, Chi-Feng LIN
  • Publication number: 20220367262
    Abstract: An opening is formed through a dielectric material layer to physically expose a top surface of a conductive material portion in, or over, a substrate. A metallic nitride liner is formed on a sidewall of the opening and on the top surface of the conductive material portion. A metallic adhesion layer including an alloy of copper and at least one transition metal that is not copper is formed on an inner sidewall of the metallic nitride liner. A copper fill material portion may be formed on an inner sidewall of the metallic adhesion layer. The metallic adhesion layer is thermally stable, and remains free of holes during subsequent thermal processes, which may include reflow of the copper fill material portion. An additional copper fill material portion may be optionally deposited after a reflow process.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 17, 2022
    Inventors: Cheng-Lun TSAI, Huei-Wen HSIEH, Chun-Sheng CHEN, Kai-Shiang KUO, Jen-Wei LIU, Cheng-Hui WENG, Chun-Chien LIN, Hung-Wen SU
  • Publication number: 20220367376
    Abstract: A method includes forming an insulating layer over a conductive feature; etching the insulating layer to expose a first surface of the conductive feature; covering the first surface of the conductive feature with a sacrificial material, wherein the sidewalls of the insulating layer are free of the sacrificial material; covering the sidewalls of the insulating layer with a barrier material, wherein the first surface of the conductive feature is free of the barrier material, wherein the barrier material includes tantalum nitride (TaN) doped with a transition metal; removing the sacrificial material; and covering the barrier material and the first surface of the conductive feature with a conductive material.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 17, 2022
    Inventors: Chia-Pang Kuo, Huan-Yu Shih, Wen-Hsuan Chen, Cheng-Lun Tsai, Ya-Lien Lee, Cheng-Hui Weng, Chun-Chieh Lin, Hung-Wen Su, Yao-Min Liu
  • Publication number: 20220367266
    Abstract: A method includes forming a first conductive feature, depositing a graphite layer over the first conductive feature, patterning the graphite layer to form a graphite conductive feature, depositing a dielectric spacer layer on the graphite layer, depositing a first dielectric layer over the dielectric spacer layer, planarizing the first dielectric layer, forming a second dielectric layer over the first dielectric layer, and forming a second conductive feature in the second dielectric layer. The second conductive feature is over and electrically connected to the graphite conductive feature.
    Type: Application
    Filed: July 21, 2021
    Publication date: November 17, 2022
    Inventors: Shu-Cheng Chin, Chih-Yi Chang, Wei Hsiang Chan, Chih-Chien Chi, Chi-Feng Lin, Hung-Wen Su
  • Publication number: 20220328690
    Abstract: A device, structure, and method are provided whereby an insert layer is utilized to provide additional support for weaker and softer dielectric layer. The insert layer may be applied between two weaker dielectric layers or the insert layer may be used with a single layer of dielectric material. Once formed, trenches and vias are formed within the composite layers, and the insert layer will help to provide support that will limit or eliminate undesired bending or other structural motions that could hamper subsequent process steps, such as filling the trenches and vias with conductive material.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 13, 2022
    Inventors: Yao-Jen Chang, Chih-Chien Chi, Chen-Yuan Kao, Hung-Wen Su, Kai-Shiang Kuo, Po-Cheng Shih, Jun-Yi Ruan
  • Publication number: 20220328309
    Abstract: Embodiments disclosed herein relate generally to capping processes and structures formed thereby. In an embodiment, a conductive feature, formed in a dielectric layer, has a metallic surface, and the dielectric layer has a dielectric surface. The dielectric surface is modified to be hydrophobic by performing a surface modification treatment. After modifying the dielectric surface, a capping layer is formed on the metallic surface by performing a selective deposition process. In another embodiment, a surface of a gate structure is exposed through a dielectric layer. A capping layer is formed on the surface of the gate structure by performing a selective deposition process.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 13, 2022
    Inventors: Chih-Chien Chi, Pei-Hsuan Lee, Hung-Wen Su, Hsiao-Kuan Wei, Jui-Fen Chien, Hsin-Yun Hsu
  • Publication number: 20220290291
    Abstract: A semiconductor device is manufactured by modifying an electromagnetic field within a deposition chamber. In embodiments in which the deposition process is a sputtering process, the electromagnetic field may be modified by adjusting a distance between a first coil and a mounting platform. In other embodiments, the electromagnetic field may be adjusted by applying or removing power from additional coils that are also present.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Inventors: Jen-Chun Wang, Ya-Lien Lee, Chih-Chien Chi, Hung-Wen Su
  • Publication number: 20220293528
    Abstract: A method of manufacturing an interconnect structure includes forming an opening through a dielectric layer. The opening exposes a top surface of a first conductive feature. The method further includes forming a barrier layer on sidewalls of the opening, passivating the exposed top surface of the first conductive feature with a treatment process, forming a liner layer over the barrier layer, and filling the opening with a conductive material. The liner layer may include ruthenium.
    Type: Application
    Filed: April 28, 2021
    Publication date: September 15, 2022
    Inventors: Shu-Cheng Chin, Ming-Yuan Gao, Chen-Yi Niu, Yen-Chun Lin, Hsin-Ying Peng, Chih-Hsiang Chang, Pei-Hsuan Lee, Chi-Feng Lin, Chih-Chien Chi, Hung-Wen Su
  • Publication number: 20220278040
    Abstract: A semiconductor device includes an insulating layer, wherein the insulating layer has a via opening and a conductive line opening. The semiconductor device further includes a via in the via opening, wherein the via includes a first conductive material. The semiconductor device further includes a conductive line in the conductive line opening. The conductive line includes a first liner layer, wherein a first thickness of the first liner layer over the via is less than a second thickness of the first liner layer over the insulating layer, and a conductive fill comprising a second conductive material different from the first conductive material.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 1, 2022
    Inventors: Shu-Cheng CHIN, Yao-Min LIU, Hung-Wen SU, Chih-Chien CHI, Chi-Feng LIN
  • Patent number: 11430692
    Abstract: An opening is formed through a dielectric material layer to physically expose a top surface of a conductive material portion in, or over, a substrate. A metallic nitride liner is formed on a sidewall of the opening and on the top surface of the conductive material portion. A metallic adhesion layer including an alloy of copper and at least one transition metal that is not copper is formed on an inner sidewall of the metallic nitride liner. A copper fill material portion may be formed on an inner sidewall of the metallic adhesion layer. The metallic adhesion layer is thermally stable, and remains free of holes during subsequent thermal processes, which may include reflow of the copper fill material portion. An additional copper fill material portion may be optionally deposited after a reflow process.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: August 30, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Cheng-Lun Tsai, Huei-Wen Hsieh, Chun-Sheng Chen, Kai-Shiang Kuo, Jen-Wei Liu, Cheng-Hui Weng, Chun-Chieh Lin, Hung-Wen Su
  • Patent number: 11380542
    Abstract: Embodiments disclosed herein relate generally to capping processes and structures formed thereby. In an embodiment, a conductive feature, formed in a dielectric layer, has a metallic surface, and the dielectric layer has a dielectric surface. The dielectric surface is modified to be hydrophobic by performing a surface modification treatment. After modifying the dielectric surface, a capping layer is formed on the metallic surface by performing a selective deposition process. In another embodiment, a surface of a gate structure is exposed through a dielectric layer. A capping layer is formed on the surface of the gate structure by performing a selective deposition process.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: July 5, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Chien Chi, Pei-Hsuan Lee, Hung-Wen Su, Hsiao-Kuan Wei, Jui-Fen Chien, Hsin-Yun Hsu
  • Patent number: 11374127
    Abstract: A device, structure, and method are provided whereby an insert layer is utilized to provide additional support for weaker and softer dielectric layer. The insert layer may be applied between two weaker dielectric layers or the insert layer may be used with a single layer of dielectric material. Once formed, trenches and vias are formed within the composite layers, and the insert layer will help to provide support that will limit or eliminate undesired bending or other structural motions that could hamper subsequent process steps, such as filling the trenches and vias with conductive material.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: June 28, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yao-Jen Chang, Chih-Chien Chi, Chen-Yuan Kao, Hung-Wen Su, Kai-Shiang Kuo, Po-Cheng Shih, Jun-Yi Ruan
  • Patent number: 11345991
    Abstract: A semiconductor device is manufactured by modifying an electromagnetic field within a deposition chamber. In embodiments in which the deposition process is a sputtering process, the electromagnetic field may be modified by adjusting a distance between a first coil and a mounting platform. In other embodiments, the electromagnetic field may be adjusted by applying or removing power from additional coils that are also present.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: May 31, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Chun Wang, Ya-Lien Lee, Chih-Chien Chi, Hung-Wen Su
  • Publication number: 20220165616
    Abstract: A method includes forming a first conductive feature in a first dielectric layer. A second dielectric layer is formed over the first conductive feature and the first dielectric layer. An opening is formed in the second dielectric layer. The opening exposes a top surface of the first conductive feature. The top surface of the first conductive feature includes a first metallic material and a second metallic material different from the first metallic material. A native oxide layer is removed from the top surface of the first conductive feature. A surfactant soaking process is performed on the top surface of the first conductive feature. The surfactant soaking process forms a surfactant layer over the top surface of the first conductive feature. A first barrier layer is deposited on a sidewall of the opening. The surfactant layer remains exposed at the end of depositing the first barrier layer.
    Type: Application
    Filed: February 11, 2022
    Publication date: May 26, 2022
    Inventors: Yao-Min Liu, Chia-Pang Kuo, Shu-Cheng Chin, Chih-Chien Chi, Cheng-Hui Weng, Hung-Wen Su, Ming-Hsing Tsai
  • Publication number: 20220084937
    Abstract: A semiconductor structure and a method of forming the same are provided. A method includes depositing a dielectric layer over a conductive feature. The dielectric layer is patterned to form an opening therein. The opening exposes a first portion of the conductive feature. A first barrier layer is deposited on a sidewall of the opening. The first portion of the conductive feature remains exposed at the end of depositing the first barrier layer.
    Type: Application
    Filed: January 7, 2021
    Publication date: March 17, 2022
    Inventors: Yao-Min Liu, Chia-Pang Kuo, Chien Chung Huang, Chih-Yi Chang, Ya-Lien Lee, Chun-Chieh Lin, Hung-Wen Su, Ming-Hsing Tsai