Patents by Inventor Hung-Wen Su

Hung-Wen Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210391275
    Abstract: A method includes forming an insulating layer over a conductive feature; etching the insulating layer to expose a first surface of the conductive feature; covering the first surface of the conductive feature with a sacrificial material, wherein the sidewalls of the insulating layer are free of the sacrificial material; covering the sidewalls of the insulating layer with a barrier material, wherein the first surface of the conductive feature is free of the barrier material, wherein the barrier material includes tantalum nitride (TaN) doped with a transition metal; removing the sacrificial material; and covering the barrier material and the first surface of the conductive feature with a conductive material.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 16, 2021
    Inventors: Chia-Pang Kuo, Huan-Yu Shih, Wen-Hsuan Chen, Cheng-Lun Tsai, Ya-Lien Lee, Cheng-Hui Weng, Chun-Chieh Lin, Hung-Wen Su, Yao-Min Liu
  • Patent number: 11177168
    Abstract: A method includes forming a trench in a low-K dielectric layer, where the trench exposes an underlying contact area of a substrate. A first tantalum nitride (TaN) layer is conformally deposited within the trench, where the first TaN layer is deposited using atomic layer deposition (ALD) or chemical vapor deposition (CVD). A tantalum (Ta) layer is deposited on the first TaN layer conformally within the trench, where the Ta layer is deposited using physical vapor deposition (PVD). An electroplating process is performed to deposit a conductive layer over the Ta layer. A via is formed over the conductive layer, where forming the via includes depositing a second TaN layer within the via and in contact with the conductive layer.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: November 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ya-Lien Lee, Hung-Wen Su, Kuei-Pin Lee, Yu-Hung Lin, Yu-Min Chang
  • Publication number: 20210343535
    Abstract: An interconnect structure and a method of forming an interconnect structure are disclosed. The interconnect structure includes a conductive plug over a substrate; a conductive feature over the conductive plug, wherein the conductive feature has a first sidewall, a second sidewall facing the first sidewall, and a bottom surface; and a carbon-containing barrier layer having a first portion along the first sidewall of the conductive feature, a second portion along the second sidewall of the conductive feature, and a third portion along the bottom surface of the conductive feature.
    Type: Application
    Filed: July 12, 2021
    Publication date: November 4, 2021
    Inventors: Rueijer Lin, Ya-Lien Lee, Chun-Chieh Lin, Hung-Wen Su
  • Publication number: 20210272910
    Abstract: A semiconductor structure with an improved metal structure is described. The semiconductor structure can include a substrate having an upper surface, an interconnect layer over the upper surface, and an additional structure deposited over the interconnect layer. The interconnect layer can include a patterned seed layer over the substrate, at least two metal lines over the seed layer, and a dielectric material between adjacent metal lines. A barrier layer can be deposited over the at least two metal lines. Methods of making the semiconductor structures are also described.
    Type: Application
    Filed: May 3, 2021
    Publication date: September 2, 2021
    Inventors: Wen-Jiun LIU, Chen-Yuan Kao, Hung-Wen Su, Ming-Hsing Tsai, Syun-Ming Jang
  • Publication number: 20210265272
    Abstract: A semiconductor device and method of manufacture are provided which utilize an air gap to help isolate conductive structures within a dielectric layer. A first etch stop layer is deposited over the conductive structures, and the first etch stop layer is patterned to expose corner portions of the conductive structures. A portion of the dielectric layer is removed to form an opening. A second etch stop layer is deposited to line the opening, wherein the second etch stop layer forms a stepped structure over the corner portions of the conductive structures. Dielectric material is then deposited into the opening such that an air gap is formed to isolate the conductive structures.
    Type: Application
    Filed: May 10, 2021
    Publication date: August 26, 2021
    Inventors: Szu-Ping Tung, Chih-Chien Chi, Hung-Wen Su
  • Patent number: 11062909
    Abstract: An interconnect structure and a method of forming an interconnect structure are disclosed. The interconnect structure includes a conductive plug over a substrate; a conductive feature over the conductive plug, wherein the conductive feature has a first sidewall, a second sidewall facing the first sidewall, and a bottom surface; and a carbon-containing barrier layer having a first portion along the first sidewall of the conductive feature, a second portion along the second sidewall of the conductive feature, and a third portion along the bottom surface of the conductive feature.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Rueijer Lin, Ya-Lien Lee, Chun-Chieh Lin, Hung-Wen Su
  • Patent number: 11018055
    Abstract: The present disclosure provides methods for forming a conductive fill material (e.g., a conductive feature) by a physical vapor deposition (PVD) process. In one embodiment, a method of forming a conductive fill material on a substrate includes maintaining a first substrate temperature at a first range for a first period of time while forming a pre-layer of a conductive fill material on a substrate, providing a thermal energy to the substrate to maintain the substrate at a second substrate temperature at a second range for a second period of time, wherein the second substrate temperature is higher than the first substrate temperature, and continuously providing the thermal energy to the substrate to maintain the substrate a third substrate temperature at a third range for a third period of time to form a bulk layer of the conductive fill material on the substrate.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: May 25, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Nai-Hao Yang, Hung-Wen Su, Kuan-Chia Chen
  • Patent number: 11004793
    Abstract: A semiconductor device and method of manufacture are provided which utilize an air gap to help isolate conductive structures within a dielectric layer. A first etch stop layer is deposited over the conductive structures, and the first etch stop layer is patterned to expose corner portions of the conductive structures. A portion of the dielectric layer is removed to form an opening. A second etch stop layer is deposited to line the opening, wherein the second etch stop layer forms a stepped structure over the corner portions of the conductive structures. Dielectric material is then deposited into the opening such that an air gap is formed to isolate the conductive structures.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: May 11, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Szu-Ping Tung, Chih-Chien Chi, Hung-Wen Su
  • Patent number: 10998269
    Abstract: A semiconductor structure with an improved metal structure is described. The semiconductor structure can include a substrate having an upper surface, an interconnect layer over the upper surface, and an additional structure deposited over the interconnect layer. The interconnect layer can include a patterned seed layer over the substrate, at least two metal lines over the seed layer, and a dielectric material between adjacent metal lines. A barrier layer can be deposited over the at least two metal lines. Methods of making the semiconductor structures are also described.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: May 4, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Jiun Liu, Chen-Yuan Kao, Hung-Wen Su, Ming-Hsing Tsai, Syun-Ming Jang
  • Publication number: 20200402795
    Abstract: Embodiments disclosed herein relate generally to capping processes and structures formed thereby. In an embodiment, a conductive feature, formed in a dielectric layer, has a metallic surface, and the dielectric layer has a dielectric surface. The dielectric surface is modified to be hydrophobic by performing a surface modification treatment. After modifying the dielectric surface, a capping layer is formed on the metallic surface by performing a selective deposition process. In another embodiment, a surface of a gate structure is exposed through a dielectric layer. A capping layer is formed on the surface of the gate structure by performing a selective deposition process.
    Type: Application
    Filed: September 4, 2020
    Publication date: December 24, 2020
    Inventors: Chih-Chien Chi, Pei-Hsuan Lee, Hung-Wen Su, Hsiao-Kuan Wei, Jui-Fen Chien, Hsin-Yun Hsu
  • Patent number: 10867800
    Abstract: An interconnect structure and a method of forming an interconnect structure are disclosed. The interconnect structure includes a conductive plug over a substrate; a conductive feature over the conductive plug, wherein the conductive feature has a first sidewall, a second sidewall facing the first sidewall, and a bottom surface; and a carbon-containing barrier layer having a first portion along the first sidewall of the conductive feature, a second portion along the second sidewall of the conductive feature, and a third portion along the bottom surface of the conductive feature.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Rueijer Lin, Ya-Lien Lee, Chun-Chieh Lin, Hung-Wen Su
  • Publication number: 20200388499
    Abstract: An interconnect structure and a method of forming an interconnect structure are disclosed. The interconnect structure includes a conductive plug over a substrate; a conductive feature over the conductive plug, wherein the conductive feature has a first sidewall, a second sidewall facing the first sidewall, and a bottom surface; and a carbon-containing barrier layer having a first portion along the first sidewall of the conductive feature, a second portion along the second sidewall of the conductive feature, and a third portion along the bottom surface of the conductive feature.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Rueijer Lin, Ya-Lien Lee, Chun-Chieh Lin, Hung-Wen Su
  • Publication number: 20200388575
    Abstract: A semiconductor structure with an improved metal structure is described. The semiconductor structure can include a substrate having an upper surface, an interconnect layer over the upper surface, and an additional structure deposited over the interconnect layer. The interconnect layer can include a patterned seed layer over the substrate, at least two metal lines over the seed layer, and a dielectric material between adjacent metal lines. A barrier layer can be deposited over the at least two metal lines. Methods of making the semiconductor structures are also described.
    Type: Application
    Filed: June 22, 2020
    Publication date: December 10, 2020
    Inventors: Wen-Jiun Liu, Chen-Yuan Kao, Hung-Wen Su, Ming-Hsing Tsai, Syun-Ming Jang
  • Publication number: 20200357922
    Abstract: A device, structure, and method are provided whereby an insert layer is utilized to provide additional support for weaker and softer dielectric layer. The insert layer may be applied between two weaker dielectric layers or the insert layer may be used with a single layer of dielectric material. Once formed, trenches and vias are formed within the composite layers, and the insert layer will help to provide support that will limit or eliminate undesired bending or other structural motions that could hamper subsequent process steps, such as filling the trenches and vias with conductive material.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Inventors: Yao-Jen Chang, Chih-Chien Chi, Chen-Yuan Kao, Hung-Wen Su, Kai-Shiang Kuo, Po-Cheng Shih, Jun-Yi Ruan
  • Patent number: 10790142
    Abstract: Embodiments disclosed herein relate generally to capping processes and structures formed thereby. In an embodiment, a conductive feature, formed in a dielectric layer, has a metallic surface, and the dielectric layer has a dielectric surface. The dielectric surface is modified to be hydrophobic by performing a surface modification treatment. After modifying the dielectric surface, a capping layer is formed on the metallic surface by performing a selective deposition process. In another embodiment, a surface of a gate structure is exposed through a dielectric layer. A capping layer is formed on the surface of the gate structure by performing a selective deposition process.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: September 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Chien Chi, Hsiao-Kuan Wei, Hung-Wen Su, Pei-Hsuan Lee, Hsin-Yun Hsu, Jui-Fen Chien
  • Patent number: 10770288
    Abstract: Embodiments disclosed herein relate generally to capping processes and structures formed thereby. In an embodiment, a conductive feature, formed in a dielectric layer, has a metallic surface, and the dielectric layer has a dielectric surface. The dielectric surface is modified to be hydrophobic by performing a surface modification treatment. After modifying the dielectric surface, a capping layer is formed on the metallic surface by performing a selective deposition process. In another embodiment, a surface of a gate structure is exposed through a dielectric layer. A capping layer is formed on the surface of the gate structure by performing a selective deposition process.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: September 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Chien Chi, Pei-Hsuan Lee, Hung-Wen Su, Hsiao-Kuan Wei, Jui-Fen Chien, Hsin-Yun Hsu
  • Patent number: 10727350
    Abstract: A device, structure, and method are provided whereby an insert layer is utilized to provide additional support for weaker and softer dielectric layer. The insert layer may be applied between two weaker dielectric layers or the insert layer may be used with a single layer of dielectric material. Once formed, trenches and vias are formed within the composite layers, and the insert layer will help to provide support that will limit or eliminate undesired bending or other structural motions that could hamper subsequent process steps, such as filling the trenches and vias with conductive material.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: July 28, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yao-Jen Chang, Chih-Chien Chi, Chen-Yuan Kao, Hung-Wen Su, Kai-Shiang Kuo, Po-Cheng Shih, Jun-Yi Ruan
  • Patent number: 10692814
    Abstract: A semiconductor structure with an improved metal structure is described. The semiconductor structure can include a substrate having an upper surface, an interconnect layer over the upper surface, and an additional structure deposited over the interconnect layer. The interconnect layer can include a patterned seed layer over the substrate, at least two metal lines over the seed layer, and a dielectric material between adjacent metal lines. A barrier layer can be deposited over the at least two metal lines. Methods of making the semiconductor structures are also described.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: June 23, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Jiun Liu, Chen-Yuan Kao, Hung-Wen Su, Ming-Hsing Tsai, Syun-Ming Jang
  • Publication number: 20200144065
    Abstract: An interconnect structure and a method of forming an interconnect structure are disclosed. The interconnect structure includes a conductive plug over a substrate; a conductive feature over the conductive plug, wherein the conductive feature has a first sidewall, a second sidewall facing the first sidewall, and a bottom surface; and a carbon-containing barrier layer having a first portion along the first sidewall of the conductive feature, a second portion along the second sidewall of the conductive feature, and a third portion along the bottom surface of the conductive feature.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: Rueijer Lin, Ya-Lien Lee, Chun-Chieh Lin, Hung-Wen Su
  • Publication number: 20200144112
    Abstract: The present disclosure provides methods for forming a conductive fill material (e.g., a conductive feature) by a physical vapor deposition (PVD) process. In one embodiment, a method of forming a conductive fill material on a substrate includes maintaining a first substrate temperature at a first range for a first period of time while forming a pre-layer of a conductive fill material on a substrate, providing a thermal energy to the substrate to maintain the substrate at a second substrate temperature at a second range for a second period of time, wherein the second substrate temperature is higher than the first substrate temperature, and continuously providing the thermal energy to the substrate to maintain the substrate a third substrate temperature at a third range for a third period of time to form a bulk layer of the conductive fill material on the substrate.
    Type: Application
    Filed: December 20, 2019
    Publication date: May 7, 2020
    Inventors: Nai-Hao Yang, Hung-Wen Su, Kuan-Chia Chen