Patents by Inventor Hung-Wen Su

Hung-Wen Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170200800
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a gate stack, a spacer layer, and a dielectric layer over a substrate. The method includes removing a first portion of the dielectric layer to form a first hole in the dielectric layer. A second portion of the dielectric layer is under the first hole. The method includes forming a first protection layer over the gate stack and the spacer layer. The method includes forming a second protection layer over the first protection layer. The second protection layer includes a metal compound material, and the first protection layer and the second protection layer includes a same metal element. The method includes removing the second portion of the dielectric layer to form a through hole. The method includes forming a conductive contact structure in the through hole.
    Type: Application
    Filed: January 7, 2016
    Publication date: July 13, 2017
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Ping LIU, Hung-Chang HSU, Hung-Wen SU, Ming-Hsing TSAI, Rueijer LIN, Sheng-Hsuan LIN, Ya-Lien LEE, Yen-Shou KAO
  • Publication number: 20170170292
    Abstract: A method of fabricating a semiconductor device is disclosed. The method includes forming a first gate stack over a substrate. The first gate stack includes a gate electrode, a first hard mask (HM) disposed over the gate electrode, and sidewall spacers along sidewalls of the first gate stack. The method also includes forming a first dielectric layer over the first gate stack, forming a second HM over the first HM and top surfaces of sidewall spacers, forming a second dielectric layer over the second HM and the first dielectric layer and removing the second and first dielectric layers to form a trench to expose a portion of the substrate while the second HM is disposed over the first gate stack.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Inventors: Hsiao-Ping Liu, Hung-Chang Hsu, Hung-Wen Su, Ming-Hsing Tsai, Rueijer Lin, Sheng-Hsuan Lin, Syun-Ming Jang, Ya-Lien Lee, Yen-Shou Kao
  • Publication number: 20170133324
    Abstract: A semiconductor structure with an improved metal structure is described. The semiconductor structure can include a substrate having an upper surface, an interconnect layer over the upper surface, and an additional structure deposited over the interconnect layer. The interconnect layer can include a patterned seed layer over the substrate, at least two metal lines over the seed layer, and a dielectric material between adjacent metal lines. A barrier layer can be deposited over the at least two metal lines. Methods of making the semiconductor structures are also described.
    Type: Application
    Filed: January 9, 2017
    Publication date: May 11, 2017
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Jiun LIU, Chen-Yuan KAO, Hung-Wen SU, Ming-Hsing TSAI, Syun-Ming JANG
  • Patent number: 9632498
    Abstract: A computer-implemented system and method of compensating for filling material losses in a semiconductor process. The computer-implemented method includes determining using a computer a pattern density difference between a first circuit pattern above a semiconductor substrate and a second circuit pattern adjacent to the first pattern. A dummy pattern is inserted between the first pattern and the second pattern so as to compensate for an estimated loss of filling material induced during electrochemical plating by the pattern density difference exceeding a threshold pattern density difference.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: April 25, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Yi Chang, Liang-Yueh Ou Yang, Chen-Yuan Kao, Hung-Wen Su
  • Publication number: 20170084485
    Abstract: An interconnect layer is disposed over a substrate. The interconnect layer includes a plurality of dielectric segments interleaved with a plurality of metal components. A plurality of vias is disposed below, and electrically coupled to, a first group of the metal components. A plurality of dielectric components is disposed underneath a second group of the metal components. The dielectric components interleave with the vias. A conductive liner is disposed below a bottom surface and on sidewalk of the vias. A dielectric barrier layer is disposed below a bottom surface and on sidewalls of the dielectric segments. The dielectric barrier layer and the dielectric segments have different material compositions.
    Type: Application
    Filed: December 6, 2016
    Publication date: March 23, 2017
    Inventors: Chun-Chieh Lin, Hung-Wen Su, Ming-Hsing Tsai, Syun-Ming Jang
  • Publication number: 20170081775
    Abstract: A method of plating a metal layer on a work piece includes exposing a surface of the work piece to a plating solution, and supplying a first voltage at a negative end of a power supply source to an edge portion of the work piece. A second voltage is supplied to an inner portion of the work piece, wherein the inner portion is closer to a center of the work piece than the edge portion. A positive end of the power supply source is connected to a metal plate, wherein the metal plate and the work piece are spaced apart from each other by, and are in contact with, the plating solution.
    Type: Application
    Filed: December 1, 2016
    Publication date: March 23, 2017
    Inventors: Chen-Yuan Kao, Hung-Wen Su, Minghsing Tsai
  • Publication number: 20170062341
    Abstract: A semiconductor device and method of manufacture are provided which utilize an air gap to help isolate conductive structures within a dielectric layer. A first etch stop layer is deposited over the conductive structures, and the first etch stop layer is patterned to expose corner portions of the conductive structures. A portion of the dielectric layer is removed to form an opening. A second etch stop layer is deposited to line the opening, wherein the second etch stop layer forms a stepped structure over the corner portions of the conductive structures. Dielectric material is then deposited into the opening such that an air gap is formed to isolate the conductive structures.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Inventors: Szu-Ping Tung, Chih-Chien Chi, Hung-Wen Su
  • Patent number: 9564398
    Abstract: A semiconductor structure with an improved metal structure is described. The semiconductor structure can include a substrate having an upper surface, an interconnect layer over the upper surface, and an additional structure deposited over the interconnect layer. The interconnect layer can include a patterned seed layer over the substrate, at least two metal lines over the seed layer, and a dielectric material between adjacent metal lines. A barrier layer can be deposited over the at least two metal lines. Methods of making the semiconductor structures are also described.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 7, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Jiun Liu, Chen-Yuan Kao, Hung-Wen Su, Mingh-Hsing Tsai, Syun-Ming Jang
  • Patent number: 9518334
    Abstract: A method of plating a metal layer on a work piece includes exposing a surface of the work piece to a plating solution, and supplying a first voltage at a negative end of a power supply source to an edge portion of the work piece. A second voltage is supplied to an inner portion of the work piece, wherein the inner portion is closer to a center of the work piece than the edge portion. A positive end of the power supply source is connected to a metal plate, wherein the metal plate and the work piece are spaced apart from each other by, and are in contact with, the plating solution.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: December 13, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Yuan Kao, Hung-Wen Su, Minghsing Tsai
  • Patent number: 9520362
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a patterned dielectric layer having a plurality of first openings. The method includes forming a conductive liner layer over the patterned dielectric layer, the conductive liner layer partially filling the first openings. The method includes forming a trench mask layer over portions of the conductive liner layer outside the first openings, thereby forming a plurality of second openings, a subset of which are formed over the first openings. The method includes depositing a conductive material in the first openings to form a plurality of vias and in the second openings to form a plurality of metal lines. The method includes removing the trench mask layer.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: December 13, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Chieh Lin, Hung-Wen Su, Ming-Hsing Tsai, Syun-Ming Jang
  • Patent number: 9496169
    Abstract: A semiconductor device and method of manufacture are provided which utilize an air gap to help isolate conductive structures within a dielectric layer. A first etch stop layer is deposited over the conductive structures, and the first etch stop layer is patterned to expose corner portions of the conductive structures. A portion of the dielectric layer is removed to form an opening. A second etch stop layer is deposited to line the opening, wherein the second etch stop layer forms a stepped structure over the corner portions of the conductive structures. Dielectric material is then deposited into the opening such that an air gap is formed to isolate the conductive structures.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: November 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Szu-Ping Tung, Chih-Chien Chi, Hung-Wen Su
  • Patent number: 9476135
    Abstract: The present disclosure relates to an electro-chemical plating (ECP) process which utilizes a dummy electrode as a cathode to perform plating for sustained idle times to mitigate additive dissociation. The dummy electrode also allows for localized plating function to improve product gapfill, and decrease wafer non-uniformity. A wide range of electroplating recipes may be applied with this strategy, comprising current plating up to approximately 200 Amps, localized plating with a resolution of approximately 1 mm, and reverse plating to remove material from the dummy electrode accumulated during the dummy plating process and replenish ionic material within the electroplating solution.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: October 25, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Yi Chang, Liang-Yueh Ou Yang, Chen-Yuan Kao, Hung-Wen Su
  • Publication number: 20160260665
    Abstract: A representative semiconductor device includes a first dielectric layer overlying a substrate, at least a first opening in the first dielectric layer, a conformal dense layer lining the at least first opening in the first dielectric layer, a barrier layer overlying the conformal dense layer, a conductive feature in the at least first opening, where a portion of the first dielectric layer between any two adjacent conductive features is removed to form a second opening, the second opening exposing the conformal dense layer between the two adjacent conductive features, and a second dielectric layer having an air gap formed therein, the second dielectric layer disposed between the two adjacent conductive features.
    Type: Application
    Filed: May 17, 2016
    Publication date: September 8, 2016
    Inventors: Chih-Chien Chi, Hung-Wen Su
  • Publication number: 20160240357
    Abstract: A physical vapor deposition system includes a chamber, a cover plate, a pedestal, and a collimator. The cover plate is disposed on the chamber for holding a target. The pedestal is disposed in the chamber for supporting a wafer. The collimator is mounted between the cover plate and the pedestal. The collimator includes a plurality of sidewall sheets together forming a plurality of passages. At least one of the passages has an entrance and an exit opposite to the entrance. The entrance faces the cover plate, and the exit faces the pedestal. A thickness of one of the sidewall sheets at the entrance is thinner than a thickness of the sidewall sheet at the exit.
    Type: Application
    Filed: February 13, 2015
    Publication date: August 18, 2016
    Inventors: Chih-Chien CHI, Hung-Wen SU, Pei-Hsuan LEE
  • Publication number: 20160240428
    Abstract: A semiconductor device and method of manufacture are provided which utilize an air gap to help isolate conductive structures within a dielectric layer. A first etch stop layer is deposited over the conductive structures, and the first etch stop layer is patterned to expose corner portions of the conductive structures. A portion of the dielectric layer is removed to form an opening. A second etch stop layer is deposited to line the opening, wherein the second etch stop layer forms a stepped structure over the corner portions of the conductive structures. Dielectric material is then deposited into the opening such that an air gap is formed to isolate the conductive structures.
    Type: Application
    Filed: February 12, 2015
    Publication date: August 18, 2016
    Inventors: Szu-Ping Tung, Chih-Chien Chi, Hung-Wen Su
  • Patent number: 9343294
    Abstract: A method for forming a semiconductor device includes forming a first dielectric layer overlying a substrate, forming at least a first opening in the first dielectric layer, forming a conformal dense layer lining the at least first opening in the first dielectric layer, forming a barrier layer overlying the conformal dense layer, forming a conductive feature in the at least first opening, removing a portion of the first dielectric layer between any two adjacent conductive features to form a second opening, wherein the second opening exposes the conformal dense layer between the two adjacent conductive features, and depositing between the two adjacent conductive features a second dielectric layer having an air gap formed therein.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: May 17, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chien Chi, Hung-Wen Su
  • Publication number: 20160133514
    Abstract: A method of forming a conductive structure includes forming a first opening and a second opening in a dielectric layer on a substrate, wherein the first opening is narrower than the second opening. The method further includes depositing a diffusion barrier layer to line the first opening and the second opening. The method further includes forming a metal layer over the diffusion barrier layer to fill at least portions of the first opening and the second opening, wherein a maximum thickness of the metal layer in the first opening is greater than a maximum thickness of the metal layer in the second opening.
    Type: Application
    Filed: January 5, 2016
    Publication date: May 12, 2016
    Inventors: Chien-An Chen, Wen-Jiun Liu, Chun-Chieh Lin, Hung-Wen Su, Ming-Hsing Tsai, Syun-Ming Jang
  • Publication number: 20160126185
    Abstract: A method of forming a semiconductor structure includes the steps: providing a substrate; forming a dielectric over the substrate; forming an opening recessed under a top surface of the dielectric; forming a barrier layer on a sidewall of the opening; performing a physical vapor deposition (PVD) to form a copper layer over the barrier layer, a corner of the opening intersecting with the top surface and the top surface with a predetermined resputter ratio so that the ratio of the thickness of the copper layer on the barrier layer and the thickness of the copper layer over the top surface is substantially greater than 1.
    Type: Application
    Filed: January 5, 2016
    Publication date: May 5, 2016
    Inventors: KEN-YU CHANG, HUNG-WEN SU
  • Publication number: 20160111327
    Abstract: A method of fabricating an integrated circuit includes depositing a cap layer on a substrate; depositing a dielectric layer on the cap layer; and forming a trench in the dielectric layer. The method further includes depositing a tantalum nitride (TaN) layer on a sidewall of the trench such that the TaN layer has a greater concentration of nitrogen than tantalum. The method further includes depositing a tantalum (Ta) layer on the TaN layer using physical vapor deposition (PVD); and depositing a metal layer over the Ta layer.
    Type: Application
    Filed: October 9, 2015
    Publication date: April 21, 2016
    Inventors: Ya-Lien Lee, Hung-Wen Su, Kuei-Pin Lee, Yu-Hung Lin, Yu-Min Chang
  • Publication number: 20160064332
    Abstract: A method of forming a metal layer may include forming an opening in a substrate; forming a liner over sidewalls of the opening; filling the opening with a first metal; etching a top surface of the first metal to form a recessed top surface below a top surface of the substrate; and exposing the recessed top surface of the first metal to a solution, the solution containing a second metal different from the first metal, the exposing causing the recessed top surface of the first metal to attract the second metal to form a cap layer over the recessed top surface of the first metal.
    Type: Application
    Filed: November 10, 2015
    Publication date: March 3, 2016
    Inventors: Chen-Yuan Kao, Hung-Wen Su, Chih-Yi Chang, Liang-Yueh Ou Yang