Patents by Inventor Hyungsuk Alexander Yoon

Hyungsuk Alexander Yoon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8026605
    Abstract: An interconnect structure is provided, including a layer of dielectric material having at least one opening and a first barrier layer on sidewalls defining the opening. A ruthenium-containing second barrier layer overlays the first barrier layer, the second barrier layer having a ruthenium zone, a ruthenium oxide zone, and a ruthenium-rich zone. The ruthenium zone is interposed between the first barrier layer and the ruthenium oxide zone. The ruthenium oxide zone is interposed between the ruthenium zone and the ruthenium-rich zone.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: September 27, 2011
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, John M. Boyd, Fritz C. Redeker, William Thie, Tiruchirapalli Arunagiri, Hyungsuk Alexander Yoon
  • Publication number: 20110143553
    Abstract: Methods and systems for handling a substrate through processes including an integrated electroless deposition process includes processing a surface of the substrate in an electroless deposition module to deposit a layer over conductive features of the substrate using a deposition fluid. The surface of the substrate is then rinsed in the electroless deposition module with a rinsing fluid. The rinsing is controlled to prevent de-wetting of the surface so that a transfer film defined from the rinsing fluid remains coated over the surface of the substrate. The substrate is removed from the electroless deposition module while maintaining the transfer film over the surface of the substrate. The transfer film over the surface of the substrate prevents drying of the surface of the substrate so that the removing is wet. The substrate, once removed from the electroless deposition module, is moved into a post-deposition module while maintaining the transfer film over the surface of the substrate.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 16, 2011
    Applicant: Lam Research Corporation
    Inventors: Yaxin Wang, Shijian Li, Fritz Redeker, John Parks, Artur Kolics, Hyungsuk Alexander Yoon, Tarek Suwwan de Felipe, Mikhail Korolik
  • Publication number: 20110065273
    Abstract: Methods of depositing a barrier layer on an interconnect structure in an atomic deposition environment are provided. One method includes depositing a barrier layer on the interconnect structure with a first nitrogen concentration during a first phase of deposition in the atomic deposition environment, The interconnect structure is formed in a dielectric layer. Then, continuing the deposition of the barrier layer on the interconnect structure with a second nitrogen concentration during a second phase deposition in the atomic deposition environment. The nitrogen concentration step-wisely decreases from the first nitrogen concentration in the first phase of the barrier layer to the second nitrogen concentration in the second phase of the barrier layer, and the first nitrogen concentration is highest where the barrier layer is in contact with the dielectric layer.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 17, 2011
    Applicant: Lam Research Corporation
    Inventors: Hyungsuk Alexander YOON, Fritz Redeker
  • Patent number: 7863179
    Abstract: Various embodiments provide improved processes and systems that produce a barrier layer with decreasing nitrogen concentration with the increase of film thickness. A barrier layer with decreasing nitrogen concentration with film thickness allows the end of barrier layer with high nitrogen concentration to have good adhesion with a dielectric layer and the end of barrier layer with low nitrogen concentration (or metal-rich) to have good adhesion with copper. An exemplary method of depositing a barrier layer on an interconnect structure is provided. The method includes (a) providing an atomic layer deposition environment, (b) depositing a barrier layer on the interconnect structure with a first nitrogen concentration during a first phase of deposition in the atomic layer deposition environment.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: January 4, 2011
    Assignee: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, Fritz Redeker
  • Publication number: 20100267229
    Abstract: The present invention relates to methods and systems for the metallization of semiconductor devices. One aspect of the present invention is a method of depositing a copper layer onto a barrier layer so as to produce a substantially oxygen free interface therebetween. In one embodiment, the method includes providing a substantially oxide free surface of the barrier layer. The method also includes depositing an amount of atomic layer deposition (ALD) copper on the oxide free surface of the barrier layer effective to prevent oxidation of the barrier layer. The method further includes depositing a gapfill copper layer over the ALD copper. Another aspect of the present invention is a system for depositing a copper layer onto barrier layer so as to produce a substantially oxygen-free interface therebetween. In one embodiment, the integrated system includes at least one barrier deposition module. The system also includes an ALD copper deposition module configured to deposit copper by atomic layer deposition.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Inventors: Fritz Redeker, John Boyd, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Publication number: 20100181025
    Abstract: An apparatus generating a plasma for removing fluorinated polymer from a substrate is provided. The apparatus includes a powered electrode assembly, which includes a powered electrode, a first dielectric layer, and a first wire mesh disposed between the powered electrode and the first dielectric layer. The apparatus also includes a grounded electrode assembly disposed opposite the powered electrode assembly so as to form a cavity wherein the plasma is generated. The first wire mesh is shielded from the plasma by the first dielectric layer when the plasma is present in the cavity, which has an outlet at one end for providing the plasma to remove the fluorinated polymer.
    Type: Application
    Filed: March 30, 2010
    Publication date: July 22, 2010
    Inventors: Hyungsuk Alexander Yoon, John Boyd, Andras Kuthi, Andrew D. Bailey, III
  • Patent number: 7749893
    Abstract: The present invention relates to methods and systems for the metallization of semiconductor devices. One aspect of the present invention is a method of depositing a copper layer onto a barrier layer so as to produce a substantially oxygen free interface therebetween. In one embodiment, the method includes providing a substantially oxide free surface of the barrier layer. The method also includes depositing an amount of atomic layer deposition (ALD) copper on the oxide free surface of the barrier layer effective to prevent oxidation of the barrier layer. The method further includes depositing a gapfill copper layer over the ALD copper. Another aspect of the present invention is a system for depositing a copper layer onto barrier layer so as to produce a substantially oxygen-free interface therebetween. In one embodiment, the integrated system includes at least one barrier deposition module. The system also includes an ALD copper deposition module configured to deposit copper by atomic layer deposition.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: July 6, 2010
    Assignee: Lam Research Corporation
    Inventors: Fritz Redeker, John Boyd, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Publication number: 20100108491
    Abstract: A method for generating plasma for removing metal oxide from a substrate is provided. The method includes providing a powered electrode assembly, which includes a powered electrode, a dielectric layer, and a wire mesh disposed between the powered electrode and the dielectric layer. The method also includes providing a grounded electrode assembly disposed opposite the powered electrode assembly to form a cavity wherein the plasma is generated. The wire mesh is shielded from the plasma by the dielectric layer when the plasma is present in the cavity, which has an outlet at one end for providing the plasma to remove the metal oxide. The method further includes introducing at least one inert gas and at least one process gas into the cavity. The method yet also includes applying an rf field to the cavity using the powered electrode to generate the plasma from the inert and the process gas.
    Type: Application
    Filed: January 7, 2010
    Publication date: May 6, 2010
    Inventors: Hyungsuk Alexander Yoon, William Thie, Yezdi Dordi, Andrew D. Bailey, III
  • Publication number: 20100099265
    Abstract: A method for generating plasma for removing an edge polymer from a substrate is provided. The method includes providing a powered electrode assembly, which includes a powered electrode, a dielectric layer, and a wire mesh disposed between the powered electrode and the dielectric layer. The method also includes providing a grounded electrode assembly disposed opposite the powered electrode assembly to form a cavity wherein the plasma is generated. The wire mesh is shielded from the plasma by the dielectric layer when the plasma is present in the cavity, which has an outlet at one end for providing the plasma to remove the edge polymer. The method further includes introducing at least one inert gas and at least one process gas into the cavity. The method yet also includes applying an RF field to the cavity using the powered electrode to generate the plasma from the inert gas and process gas.
    Type: Application
    Filed: December 28, 2009
    Publication date: April 22, 2010
    Inventors: HYUNGSUK ALEXANDER YOON, YUNSANG KIM, JASON A. RYDER, ANDREW D. BAILEY, III
  • Patent number: 7691278
    Abstract: An apparatus generating a plasma for removing fluorinated polymer from a substrate is disclosed. The embodiment includes a powered electrode assembly, including a powered electrode, a first dielectric layer, and a first wire mesh disposed between the powered electrode and the first dielectric layer. The embodiment also includes a grounded electrode assembly disposed opposite the powered electrode assembly so as to form a cavity wherein the plasma is generated, the first wire mesh being shielded from the plasma by the first dielectric layer when the plasma is present in the cavity, the cavity having an outlet at one end for providing the plasma to remove the fluorinated polymer.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: April 6, 2010
    Assignee: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, John Boyd, Andras Kuthi, Andrew D. Bailey, III
  • Publication number: 20100044867
    Abstract: Presented are methods of fabricating three-dimensional integrated circuits that include post-contact back end of line through-hole via integration for the three-dimensional integrated circuits. Another aspect of the present invention includes three-dimensional integrated circuits fabricated according to methods of the present invention.
    Type: Application
    Filed: November 5, 2009
    Publication date: February 25, 2010
    Inventors: John Boyd, Fritz Redeker, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Patent number: 7662253
    Abstract: An apparatus generating a plasma for removing metal oxide from a substrate is disclosed. The embodiment includes a powered electrode assembly, including a powered electrode, a first dielectric layer, and a first wire mesh disposed between the powered electrode and the first dielectric layer. The embodiment also includes a grounded electrode assembly disposed opposite the powered electrode assembly so as to form a cavity wherein the plasma is generated, the first wire mesh being shielded from the plasma by the first dielectric layer when the plasma is present in the cavity, the cavity having an outlet at one end for providing the plasma to remove the metal oxide.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: February 16, 2010
    Assignee: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, William Thie, Yezdi Dordi, Andrew D. Bailey, III
  • Patent number: 7651585
    Abstract: An apparatus generating a plasma for removing an edge polymer from a substrate is disclosed. The embodiment includes a powered electrode assembly, including a powered electrode, a first dielectric layer, and a first wire mesh disposed between the powered electrode and the first dielectric layer. The embodiment also includes a grounded electrode assembly disposed opposite the powered electrode assembly so as to form a cavity wherein the plasma is generated, the first wire mesh being shielded from the plasma by the first dielectric layer when the plasma is present in the cavity, the cavity having an outlet at one end for providing the plasma to remove the edge polymer.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: January 26, 2010
    Assignee: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, Yunsang Kim, Jason A. Ryder, Andrew D. Bailey, III
  • Publication number: 20090320749
    Abstract: An integrated system for depositing films on a substrate for copper interconnect is provided. The system includes a processing chamber with a plurality of proximity heads, and a vacuum transfer module coupled to the processing chamber. Selected ones of the proximity heads are used for surface treatments and atomic layer depositions (ALDs). The system further includes a processing module for copper seed layer deposition, which is integrated with a rinse/dryer to enable dry-in/dry-out process capability and is filled with an inert gas to limit the exposure of the substrate to oxygen. Additionally, the system includes a controlled-ambient transfer module coupled to the processing module for copper seed layer deposition. Further, the system includes a loadlock coupled to the vacuum transfer module and to the controlled-ambient transfer module. The integrated system enables controlled-ambient transitions within the system to limit exposure of the substrate to uncontrolled ambient conditions outside of the system.
    Type: Application
    Filed: September 8, 2009
    Publication date: December 31, 2009
    Inventors: Hyungsuk Alexander Yoon, Mikhail Korolik, Fritz C. Redeker, John M. Boyd, Yezdi Dordi
  • Publication number: 20090304914
    Abstract: The embodiments fill the need enabling deposition of a thin and conformal barrier layer, and a copper layer in the copper interconnect with good electro-migration performance and with reduced risk of stress-induce voiding of copper interconnect. Electromigration and stress-induced voiding are affected by the adhesion between the barrier layer and the copper layer. A functionalization layer is deposited over the barrier layer to enable the copper layer being deposit in the copper interconnect. The functionalization layer forms strong bonds with barrier layer and with copper to improve adhesion property between the two layers. An exemplary method of preparing a substrate surface of a substrate to deposit a functionalization layer over a metallic barrier layer of a copper interconnect to assist deposition of a copper layer in the copper interconnect in order to improve electromigration performance of the copper interconnect is provided.
    Type: Application
    Filed: December 13, 2006
    Publication date: December 10, 2009
    Applicant: Lam Research Corporation
    Inventors: Praveen Nalla, William Thie, John Boyd, Tiruchirapalli Arunagiri, Hyungsuk Alexander Yoon, Fritz C. Redeker, Yezdi Dordi
  • Patent number: 7615480
    Abstract: Presented are methods of fabricating three-dimensional integrated circuits that include post-contact back end of line through-hole via integration for the three-dimensional integrated circuits. In one embodiment, the method comprises forming metal plug contacts through a hard mask and a premetal dielectric to transistors in the semiconductor. The method also includes etching a hole for a through-hole via through the hard mask to the semiconductor using a patterned photoresist process, removing the patterned photoresist and using a hard mask process to etch the hole to an amount into the semiconductor. The method further includes depositing a dielectric liner to isolate the hole from the semiconductor, depositing a gapfill metal to fill the hole, and planarizing the surface of the substrate to the hard mask. Another aspect of the present invention includes three-dimensional integrated circuits fabricated according to methods of the present invention.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: November 10, 2009
    Assignee: Lam Research Corporation
    Inventors: John Boyd, Fritz Redeker, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Patent number: 7615486
    Abstract: A method and system for depositing films on a substrate for copper interconnect in an integrated system are provided to enable controlled-ambient transitions within an integrated system to limit exposure of the substrate to uncontrolled ambient conditions. The method includes moving the substrate into a processing chamber having a plurality of proximity heads. Within the processing chamber, barrier layer deposition is performed over a surface of the substrate using one of the plurality of proximity heads functioning to perform barrier layer ALD. In addition, the method includes moving the substrate from the processing chamber, through a transfer module of the integrated systems, into a processing module for performing copper seed layer deposition. Within the processing module for performing copper seed layer deposition, copper seed layer deposition is performed over the surface of the substrate.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: November 10, 2009
    Assignee: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, Mikhail Korolik, Fritz C. Redeker, John M. Boyd, Yezdi Dordi
  • Patent number: 7540935
    Abstract: A method of etching a conductive layer includes converting at least a portion of the conductive layer and etching the conductive layer to substantially remove the converted portion of the conductive layer and thereby expose a remaining surface. The remaining surface has an average surface roughness of less than about 10 nm. A system for etching a conductive layer is also disclosed.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: June 2, 2009
    Assignee: Lam Research Corporation
    Inventors: Yunsang Kim, Andrew D. Bailey, III, Hyungsuk Alexander Yoon, Arthur M. Howald
  • Publication number: 20090113656
    Abstract: An apparatus, system and method for cleaning a substrate edge include a bristle brush unit that cleans bevel polymers deposited on substrate edges using frictional contact in the presence of cleaning chemistry. The bristle brush unit is made up of a plurality of outwardly extending vanes and is mounted on a rotating shaft. An abrasive material is distributed throughout and within the outwardly extending vanes of the bristle brush unit to provide the frictional contact. The bristle brush unit cleans the edge of the substrate by allowing frictional contact of the plurality of abrasive particles with the edge of the substrate in the presence of fluids, such as cleaning chemistry, to cut, rip and tear the bevel polymer from the edge of the substrate.
    Type: Application
    Filed: May 5, 2006
    Publication date: May 7, 2009
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Hyungsuk Alexander Yoon, Andrew D. Bailey, III, Jason A. Ryder, Mark H. Wilcoxson, Jeffrey G. Gasparitsch, Randy Johnson, Stephan P. Hoffmann
  • Publication number: 20080315418
    Abstract: Presented are methods of fabricating three-dimensional integrated circuits that include post-contact back end of line through-hole via integration for the three-dimensional integrated circuits. In one embodiment, the method comprises forming metal plug contacts through a hard mask and a premetal dielectric to transistors in the semiconductor. The method also includes etching a hole for a through-hole via through the hard mask to the semiconductor using a patterned photoresist process, removing the patterned photoresist and using a hard mask process to etch the hole to an amount into the semiconductor. The method further includes depositing a dielectric liner to isolate the hole from the semiconductor, depositing a gapfill metal to fill the hole, and planarizing the surface of the substrate to the hard mask. Another aspect of the present invention includes three-dimensional integrated circuits fabricated according to methods of the present invention.
    Type: Application
    Filed: June 20, 2007
    Publication date: December 25, 2008
    Inventors: John Boyd, Fritz Redeker, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li