Patents by Inventor Hyungsuk Alexander Yoon

Hyungsuk Alexander Yoon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080315422
    Abstract: Methods and apparatuses for fabricating three-dimensional integrated circuits having through hole vias are provided. One aspect of the present invention is a method of gapfill for through hole vias for three-dimensional integrated circuits. The method comprises providing a semiconductor wafer having a plurality of holes for through hole vias and depositing a conformal metal layer to partially fill the holes to leave open voids. The method also includes purging the voids and cleaning the surface of the voids and using a dry deposition process to fill or close the voids. Another aspect of the present invention is an electronic device structure for a three-dimensional integrated circuit.
    Type: Application
    Filed: June 20, 2007
    Publication date: December 25, 2008
    Inventors: John Boyd, Fritz Redeker, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Publication number: 20080314756
    Abstract: Presented are methods and systems for fabricating three-dimensional integrated circuits having large diameter through-hole vias. One embodiment of the present invention provides a method of processing a wafer having holes for through-hole vias. The method comprises plating a gapfill metal on the wafer. The method also comprises chemically or electrochemically deplating a portion of the overburden metal. The method further comprises using chemical mechanical planarization to planarize the gapfill metal and to remove the remaining overburden metal. Another embodiment of the present invention is an integrated system comprising a process chamber for containing the wafer, a plating component integrated with the process chamber, and a deplating component integrated with the process chamber. The plating component is configured to electrochemically plate a gapfill metal onto the wafer to a least partially fill the holes.
    Type: Application
    Filed: June 20, 2007
    Publication date: December 25, 2008
    Inventors: John Boyd, Fritz Redeker, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Publication number: 20080299772
    Abstract: The present invention relates to methods and structures for the metallization of semiconductor devices. One aspect of the present invention is a method of forming a semiconductor device having copper metallization. In one embodiment, the method includes providing a patterned wafer having a diffusion barrier for copper; depositing a copperless seed layer on the diffusion barrier effective for electrochemical deposition of gapfill copper. The seed layer is formed by a conformal deposition process and by a nonconformal deposition process. The method further includes electroplating copper gapfill onto the seed layer. Another aspect of the invention includes electronic devices made using methods and structures according to embodiments of the present invention.
    Type: Application
    Filed: June 4, 2007
    Publication date: December 4, 2008
    Inventors: Hyungsuk Alexander Yoon, Fritz Redecker
  • Publication number: 20080260967
    Abstract: The embodiments fill the needs of systems and processes that perform substrate surface treatment to provide homogenous, clean, and sometimes activated surface in order to provide good adhesion between layers to improve metal migration and void propagation. In one exemplary embodiment, a chamber for performing surface treatment and film deposition is provided. The chamber includes a first proximity head for substrate surface treatment configured to dispense a first treatment gas to treat a portion of a surface of a substrate under the first proximity head for substrate surface treatment. The chamber also includes a first proximity head for atomic layer deposition (ALD) configured to sequentially dispensing a first reactant gas and a first purging gas to deposit a first ALD film under the second proximity head for ALD.
    Type: Application
    Filed: April 17, 2007
    Publication date: October 23, 2008
    Inventors: Hyungsuk Alexander Yoon, Mikhail Korolik, Fritz C. Redeker, John M. Boyd, Yezdi Dordi
  • Publication number: 20080260963
    Abstract: The embodiments fill the needs of systems and processes that perform substrate surface treatment to provide homogenous, clean, and sometimes activated surface in order to provide good adhesion between layers to improve metal migration and void propagation. In an exemplary embodiment, a proximity head for treating a substrate surface is provided. The proximity head is configured to dispense a treatment gas to treat an active process region of a substrate surface under the proximity head. The proximity head covers the action process region of the substrate surface and the proximity head includes at least one vacuum channel to pull excess treatment gas from a reaction volume between the proximity head and the substrate. The proximity head has an excitation chamber to excite the treatment gas before the treatment gas being dispensed on the active process region portion of the substrate surface.
    Type: Application
    Filed: April 17, 2007
    Publication date: October 23, 2008
    Inventors: Hyungsuk Alexander Yoon, Mikhail Korolik, Fritz C. Redeker, John M. Boyd, Yezdi Dordi
  • Publication number: 20080260940
    Abstract: A method and system for depositing films on a substrate for copper interconnect in an integrated system is provided. The method includes moving the substrate into a processing chamber having a plurality of proximity heads. Selected ones of the proximity heads is configured to perform at least one of surface treatments and atomic layer depositions (ALDs). The processing chamber is part of the integrated system. Within the processing chamber, barrier layer deposition is performed over a surface of the substrate using one of the plurality of proximity heads functioning to perform barrier layer ALD. In addition, the method includes moving the substrate from the processing chamber, through a transfer module of the integrated system and into a processing module for performing copper seed layer deposition. The processing module for performing copper seed layer deposition is part of the integrated system.
    Type: Application
    Filed: April 17, 2007
    Publication date: October 23, 2008
    Inventors: Hyungsuk Alexander Yoon, Mikhail Korolik, Fritz C. Redeker, John M. Boyd, Yezdi Dordi
  • Publication number: 20080261412
    Abstract: The embodiments provide apparatus and methods of depositing conformal thin film on interconnect structures by providing processes and systems using an atomic layer deposition (ALD). More specifically, each of the ALD systems includes a proximity head that has a small reaction volume right above an active process region of the substrate surface. The proximity head small amount of reactants and purging gas to be distributed and pumped away from the small reaction volume between the proximity head and the substrate in relatively short periods, which increases the through-put. In an exemplary embodiment, a proximity head for dispensing reactants and purging gas to deposit a thin film by atomic layer deposition (ALD) is provided. The proximity head is configured to sequentially dispensing a reactant gas and a purging gas to deposit a thin ALD film under the proximity head. The proximity head covers an active process region of a substrate surface.
    Type: Application
    Filed: April 17, 2007
    Publication date: October 23, 2008
    Inventors: Hyungsuk Alexander Yoon, Mikhail Korolik, Fritz C. Redeker, John M. Boyd, Yezdi Dordi
  • Patent number: 7396565
    Abstract: Embodiments of the present invention relate to an apparatus and method of cyclical deposition utilizing three or more precursors in which delivery of at least two of the precursors to a substrate structure at least partially overlap. One embodiment of depositing a ternary material layer over a substrate structure comprises providing at least one cycle of gases to deposit a ternary material layer. One cycle comprises introducing a pulse of a first precursor, introducing a pulse of a second precursor, and introducing a pulse of a third precursor in which the pulse of the second precursor and the pulse of the third precursor at least partially overlap. In one aspect, the ternary material layer includes, but is not limited to, tungsten boron silicon (WBxSiy), titanium silicon nitride (TiSixNy), tantalum silicon nitride (TaSixNy), silicon oxynitride (SiOxNy), and hafnium silicon oxide (HfSixOy).
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: July 8, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Michael Xi Yang, Hyungsuk Alexander Yoon, Hui Zhang, Hongbin Fang, Ming Xi
  • Publication number: 20080142971
    Abstract: An interconnect structure is provided, including a layer of dielectric material having at least one opening and a first barrier layer on sidewalls defining the opening. A ruthenium-containing second barrier layer overlays the first barrier layer, the second barrier layer having a ruthenium zone, a ruthenium oxide zone, and a ruthenium-rich zone. The ruthenium zone is interposed between the first barrier layer and the ruthenium oxide zone. The ruthenium oxide zone is interposed between the ruthenium zone and the ruthenium-rich zone.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 19, 2008
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, John M. Boyd, Fritz C. Redeker, William Thie, Tiruchirapalli Arunagiri, Hyungsuk Alexander Yoon
  • Publication number: 20080142972
    Abstract: The present invention relates to methods and systems for the metallization of semiconductor devices. One aspect of the present invention is a method of depositing a copper layer onto a barrier layer so as to produce a substantially oxygen free interface therebetween. In one embodiment, the method includes providing a substantially oxide free surface of the barrier layer. The method also includes depositing an amount of atomic layer deposition (ALD) copper on the oxide free surface of the barrier layer effective to prevent oxidation of the barrier layer. The method further includes depositing a gapfill copper layer over the ALD copper. Another aspect of the present invention is a system for depositing a copper layer onto barrier layer so as to produce a substantially oxygen-free interface therebetween. In one embodiment, the integrated system includes at least one barrier deposition module. The system also includes an ALD copper deposition module configured to deposit copper by atomic layer deposition.
    Type: Application
    Filed: December 18, 2006
    Publication date: June 19, 2008
    Inventors: Fritz Redeker, John Boyd, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Publication number: 20080102621
    Abstract: Various embodiments provide improved processes and systems that produce a barrier layer with decreasing nitrogen concentration with the increase of film thickness. A barrier layer with decreasing nitrogen concentration with film thickness allows the end of barrier layer with high nitrogen concentration to have good adhesion with a dielectric layer and the end of barrier layer with low nitrogen concentration (or metal-rich) to have good adhesion with copper. An exemplary method of depositing a barrier layer on an interconnect structure is provided. The method includes (a) providing an atomic layer deposition environment, (b) depositing a barrier layer on the interconnect structure with a first nitrogen concentration during a first phase of deposition in the atomic layer deposition environment.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Applicant: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, Fritz Redeker
  • Publication number: 20080057198
    Abstract: The embodiments fill the need of improving electromigration and reducing stress-induced voids of copper interconnect by enabling deposition of a thin and conformal barrier layer, and a copper layer in the copper interconnect. The adhesion between the barrier layer and the copper layer can be improved by making the barrier layer metal-rich prior copper deposition and by limiting the amount of oxygen the barrier layer is exposed prior to copper deposition. Alternatively, a functionalization layer can be deposited over the barrier layer to enable the copper layer being deposit in the copper interconnect with good adhesion between the barrier layer and the copper layer. An exemplary method of preparing a substrate surface of a substrate to deposit a functionalization layer over a metallic barrier layer of a copper interconnect to assist deposition of a copper layer in the copper interconnect in an integrated system in order to improve electromigration performance of the copper interconnect is provided.
    Type: Application
    Filed: December 13, 2006
    Publication date: March 6, 2008
    Applicant: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, John Boyd, Yezdi Dordi, Fritz C. Redeker
  • Publication number: 20070292603
    Abstract: The embodiments fill the need to enhance electro-migration performance, provide lower metal resistivity, and improve metal-to-metal interfacial adhesion for copper interconnects by providing improved processes and systems that produce an improved metal-to-metal interface, more specifically barrier-to-copper interface. An exemplary method of preparing a substrate surface of a substrate to deposit a metallic barrier layer to line a copper interconnect structure of the substrate and to deposit a thin copper seed layer on a surface of the metallic barrier layer in an integrated system to improve electromigration performance of the copper interconnect is provided. The method includes cleaning an exposed surface of a underlying metal to remove surface metal oxide in the integrated system, wherein the underlying metal is part of a underlying interconnect electrically connected to the copper interconnect.
    Type: Application
    Filed: August 30, 2006
    Publication date: December 20, 2007
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, Tiruchirapalli Arunagiri, Hyungsuk Alexander Yoon, Fritz C. Redeker, William Thie, Arthur M. Howald
  • Patent number: 6958296
    Abstract: The present invention provides a method of forming a titanium silicon nitride barrier layer on a semiconductor wafer, comprising the steps of depositing a titanium nitride layer on the semiconductor wafer; plasma-treating the titanium nitride layer in a N2/H2 plasma; and exposing the plasma-treated titanium nitride layer to a silane ambient, wherein silicon is incorporated into the titanium nitride layer as silicon nitride thereby forming a titanium silicon nitride barrier layer. Additionally, there is provided a method of improving the barrier performance of a titanium nitride layer comprising the step of introducing silicon into the titanium nitride layer such that the silicon is incorporated into the titanium nitride layer as silicon nitride. Also provided is a method of integrating copper into a semiconductor device and a method of improving copper wettability at a copper/titanium nitride interface in a semiconductor device.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: October 25, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Ling Chen, Christophe Marcadal, Hyungsuk Alexander Yoon
  • Patent number: 6846516
    Abstract: Embodiments of the present invention relate to an apparatus and method of cyclical deposition utilizing three or more precursors in which delivery of at least two of the precursors to a substrate structure at least partially overlap. One embodiment of depositing a ternary material layer over a substrate structure comprises providing at least one cycle of gases to deposit a ternary material layer. One cycle comprises introducing a pulse of a first precursor, introducing a pulse of a second precursor, and introducing a pulse of a third precursor in which the pulse of the second precursor and the pulse of the third precursor at least partially overlap. In one aspect, the ternary material layer includes, but is not limited to, tungsten boron silicon (WBxSiy), titanium silicon nitride (TiSixNy), tantalum silicon nitride (TaSixNy), silicon oxynitride (SiOxNy), and hafnium silicon oxide (HfSixOy).
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: January 25, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Michael Xi Yang, Hyungsuk Alexander Yoon, Hui Zhang, Hongbin Fang, Ming Xi
  • Patent number: 6809026
    Abstract: A method to selectively deposit a barrier layer on a metal film formed on a substrate is disclosed. The barrier layer is selectively deposited on the metal film using a cyclical deposition process including a predetermined number of deposition cycles followed by a purge step. Each deposition cycle comprises alternately adsorbing a refractory metal-containing precursor and a reducing gas on the metal film formed on the substrate in a process chamber.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: October 26, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Hyungsuk Alexander Yoon, Michael X. Yang, Hui Zhang, Soonil Hong, Ming Xi
  • Publication number: 20040197492
    Abstract: The present invention provides a method of forming a titanium silicon nitride barrier layer on a semiconductor wafer, comprising the steps of depositing a titanium nitride layer on the semiconductor wafer; plasma-treating the titanium nitride layer in a N2/H2 plasma; and exposing the plasma-treated titanium nitride layer to a silane ambient, wherein silicon is incorporated into the titanium nitride layer as silicon nitride thereby forming a titanium silicon nitride barrier layer. Additionally, there is provided a method of improving the barrier performance of a titanium nitride layer comprising the step of introducing silicon into the titanium nitride layer such that the silicon is incorporated into the titanium nitride layer as silicon nitride. Also provided is a method of integrating copper into a semiconductor device and a method of improving copper wettability at a copper/titanium nitride interface in a semiconductor device.
    Type: Application
    Filed: July 22, 2003
    Publication date: October 7, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Ling Chen, Christophe Marcadal, Hyungsuk Alexander Yoon
  • Publication number: 20030224217
    Abstract: A process for treating refractory metal-boron layers deposited by atomic layer deposition resulting in the formation of a ternary amorphous refractory metal-nitrogen-boron film is disclosed. The resulting ternary film remains amorphous following thermal annealing at temperatures up to 800° C. The ternary films are formed following thermal annealing in a reactive nitrogen-containing gas. Subsequent processing does not disrupt the amorphous character of the ternary film. arrangement where a blended solution is supplied to a remote point of use.
    Type: Application
    Filed: October 21, 2002
    Publication date: December 4, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Jeong Soo Byun, Alfred W. Mak, Hui Zhang, Hyungsuk Alexander Yoon, Avgerinos V. Gelatos, Robert L. Jackson, Ming Xi, Randhir P.S. Thakur
  • Publication number: 20030190423
    Abstract: Embodiments of the present invention relate to an apparatus and method of cyclical deposition utilizing three or more precursors in which delivery of at least two of the precursors to a substrate structure at least partially overlap. One embodiment of depositing a ternary material layer over a substrate structure comprises providing at least one cycle of gases to deposit a ternary material layer. One cycle comprises introducing a pulse of a first precursor, introducing a pulse of a second precursor, and introducing a pulse of a third precursor in which the pulse of the second precursor and the pulse of the third precursor at least partially overlap. In one aspect, the ternary material layer includes, but is not limited to, tungsten boron silicon (WBxSiy), titanium silicon nitride (TiSixNy), tantalum silicon nitride (TaSixNy), silicon oxynitride (SiOxNy), and hafnium silicon oxide (HfSixOy).
    Type: Application
    Filed: April 8, 2002
    Publication date: October 9, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Michael Xi Yang, Hyungsuk Alexander Yoon, Hui Zhang, Hongbin Fang, Ming Xi
  • Publication number: 20030181035
    Abstract: A method to selectively deposit a barrier layer on a metal film formed on a substrate is disclosed. The barrier layer is selectively deposited on the metal film using a cyclical deposition process including a predetermined number of deposition cycles followed by a purge step. Each deposition cycle comprises alternately adsorbing a refractory metal-containing precursor and a reducing gas on the metal film formed on the substrate in a process chamber.
    Type: Application
    Filed: December 18, 2002
    Publication date: September 25, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Hyungsuk Alexander Yoon, Michael X. Yang, Hui Zhang, Soonil Hong, Ming Xi