Patents by Inventor Jürgen Off

Jürgen Off has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170040165
    Abstract: What is specified is a method for producing a layer structure (10) as a buffer layer of a semiconductor component, said method comprising the following steps: a) provision of a carrier (1), which has a silicon surface (1a), b) deposition of a first layer sequence (2), which comprises a seeding layer (21) containing aluminium and nitrogen, on the silicon surface (1a) of the carrier (1) along a stacking direction (H) running perpendicular to a main plane of extent of the carrier (1), c) three-dimensional growth of a 3D-GaN layer (3), which is formed with gallium nitride, on a top surface (2a) of the first layer sequence (2) which is remote from the silicon surface (1a), d) two-dimensional growth of a 2D-GaN layer (4), which is formed with gallium nitride, on the outer surfaces (3a) of the 3D-GaN layer (3) which are remote from the silicon surface (1a).
    Type: Application
    Filed: April 13, 2015
    Publication date: February 9, 2017
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Philipp DRECHSEL, Werner BERGBAUER, Juergen OFF, Peter STAUSS
  • Publication number: 20170025569
    Abstract: The invention concerns an optoelectronic component comprising a layer structure with a light-active layer. In a first lateral region the light-active layer has a higher density of V-defects than in a second lateral region.
    Type: Application
    Filed: October 4, 2016
    Publication date: January 26, 2017
    Inventors: Christian LEIRER, Tobias MEYER, Matthias PETER, Juergen OFF, Joachim HERTKORN, Andreas LOEFFLER, Alexander WALTER, Dario SCHIAVON
  • Publication number: 20170025570
    Abstract: A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
    Type: Application
    Filed: October 6, 2016
    Publication date: January 26, 2017
    Inventors: Matthias Peter, Tobias Meyer, Alexander Walter, Tetsuya Taki, Juergen Off, Rainer Butendeich, Joachim Hertkorn
  • Patent number: 9553231
    Abstract: The semiconductor layer sequence includes an n-conductive layer, a p-conductive layer and an active zone located therebetween. The active zone comprises N quantum wells with N?2. At a first working point (W1) at a first current density, the quantum wells have a first emission wavelength and, at a second working point (W2) at a second current density, a second emission wavelength. At least two of the first emission wavelengths differ from one another and at least some of the second emission wavelengths differ from the first emission wavelengths. The first current density is smaller than the second current density and the current densities differ from one another at least by a factor of 2.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: January 24, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Tobias Meyer, Jürgen Off
  • Publication number: 20170005223
    Abstract: A method for producing an electronic semiconductor chip and a semiconductor chip are disclosed. In embodiments, the method includes providing a growth substrate having a growth surface formed by a flat region having a plurality of three-dimensional surface structures on the flat region, directly applying a nucleation layer of oxygen-containing AlN over a large area to the growth surface and growing a nitride-based semiconductor layer sequence on the nucleation layer, wherein growing the semiconductor layer sequence includes selectively growing the semiconductor layer sequence upwards from the flat region.
    Type: Application
    Filed: February 13, 2015
    Publication date: January 5, 2017
    Applicants: OSRAM Opto Semiconductors GmbH, OSRAM Opto Semiconductors GmbH
    Inventors: Werner Bergbauer, Thomas Lehnhardt, Jürgen Off, Joachim Hertkorn
  • Patent number: 9530931
    Abstract: A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: December 27, 2016
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Matthias Peter, Tobias Meyer, Alexander Walter, Tetsuya Taki, Juergen Off, Rainer Butendeich, Joachim Hertkorn
  • Patent number: 9502611
    Abstract: The invention concerns an optoelectronic component comprising a layer structure with a light-active layer. In a first lateral region the light-active layer has a higher density of V-defects than in a second lateral region.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: November 22, 2016
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Christian Leirer, Tobias Meyer, Matthias Peter, Juergen Off, Joachim Hertkorn, Andreas Loeffler, Alexander Walter, Dario Schiavon
  • Patent number: 9337388
    Abstract: A method can be used for producing a semiconductor layer sequence, which is based on a nitride compound semiconductor material and which comprises a microstructured outer surface. The method has the following steps: A) growing at least one first semiconductor layer of the semiconductor layer sequence on a substrate; B) applying an etch-resistant layer on the first semiconductor layer; C) growing at least one further semiconductor layer on the layer sequence obtained in step B); D) separating the semiconductor layer sequence from the substrate, a separating zone of the semiconductor layer sequence being at least partly removed; E) etching the obtained separating surface of the semiconductor layer sequence by an etching means such that a microstructuring of the first semiconductor layer is carried out and the microstructured outer surface is formed.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: May 10, 2016
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Joachim Hertkorn, Tetsuya Taki, Jürgen Off
  • Publication number: 20160087142
    Abstract: The semiconductor layer sequence includes an n-conductive layer, a p-conductive layer and an active zone located therebetween. The active zone comprises N quantum wells with N?2. At a first working point (W1) at a first current density, the quantum wells have a first emission wavelength and, at a second working point (W2) at a second current density, a second emission wavelength. At least two of the first emission wavelengths differ from one another and at least some of the second emission wavelengths differ from the first emission wavelengths. The first current density is smaller than the second current density and the current densities differ from one another at least by a factor of 2.
    Type: Application
    Filed: April 11, 2014
    Publication date: March 24, 2016
    Inventors: Tobias MEYER, Jürgen OFF
  • Publication number: 20160079476
    Abstract: An optoelectronic semiconductor component includes a layer sequence including a p-doped layer, an n-doped layer and an active zone that generates electromagnetic radiation arranged between the n-doped layer and the p-doped layer, wherein the n-doped layer includes at least GaN, an interlayer is arranged in the n-doped layer, wherein the interlayer includes AlxGa1-xN, wherein 0<x?1, and the interlayer includes magnesium.
    Type: Application
    Filed: April 17, 2014
    Publication date: March 17, 2016
    Inventors: Tobias Meyer, Matthias Peter, Jürgen Off, Alexander Walter, Tobias Gotschke, Christian Leirer
  • Publication number: 20160049543
    Abstract: An optoelectronic device includes a carrier on which a semiconductor layer sequence is applied, said semiconductor layer sequence including an n-doped semiconductor layer and a p-doped semiconductor layer such that a p-n junction is formed which includes an active zone that generates electromagnetic radiation, wherein at least one of the n-doped semiconductor layer and the p-doped semiconductor layer includes a doped region having a first doping concentration greater than a second doping concentration in a surrounding area of the region in the semiconductor layer including the region.
    Type: Application
    Filed: March 24, 2014
    Publication date: February 18, 2016
    Inventors: Tobias Meyer, Christian Leirer, Lorenzo Zini, Jürgen Off, Andreas Löffler, Adam Bauer
  • Publication number: 20150349214
    Abstract: An optoelectronic semiconductor chip, comprising: a semiconductor layer sequence having an active zone for generating a light radiation; and a conversion structure, comprising conversion regions for converting the generated light radiation, non-converting regions being arranged between said conversion regions.
    Type: Application
    Filed: January 8, 2014
    Publication date: December 3, 2015
    Inventors: Tobias MEYER, Matthias PETER, Michaela WEBER, Tobias GOTSCHKE, Jürgen OFF
  • Patent number: 9196789
    Abstract: A reflective contact layer system and a method for forming a reflective contact layer system for an optoelectronic component are disclosed. In an embodiment the component includes a first p-doped nitride compound semiconductor layer, a transparent conductive oxide layer, a minor layer and a second p-doped nitride compound semiconductor layer arranged between the first p-doped nitride compound semiconductor layer and the transparent conductive oxide layer, wherein the second p-doped nitride compound semiconductor layer has N-face domains at an interface facing the transparent conductive oxide layer, and wherein the N-face domains at the interface have an area proportion of at least 95%.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: November 24, 2015
    Assignees: OSRAM Opto Semiconductors GmbH, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Matthias Peter, Simeon Katz, Jürgen Off, Korbinian Perzlmaier, Kai Gehrke, Rolf Aidam, Jürgen Däubler, Thorsten Passow
  • Publication number: 20150270437
    Abstract: A reflective contact layer system and a method for forming a reflective contact layer system for an optoelectronic component are disclosed. In an embodiment the component includes a first p-doped nitride compound semiconductor layer, a transparent conductive oxide layer, a minor layer and a second p-doped nitride compound semiconductor layer arranged between the first p-doped nitride compound semiconductor layer and the transparent conductive oxide layer, wherein the second p-doped nitride compound semiconductor layer has N-face domains at an interface facing the transparent conductive oxide layer, and wherein the N-face domains at the interface have an area proportion of at least 95%.
    Type: Application
    Filed: July 24, 2013
    Publication date: September 24, 2015
    Inventors: Matthias Peter, Simeon Katz, Jürgen Off, Korbinian Perzlmaier, Kai Gehrke, Rolf Aidam, Jürgen Däubler, Thorsten Passow
  • Publication number: 20150249181
    Abstract: The invention concerns an optoelectronic component comprising a layer structure with a light-active layer. In a first lateral region the light-active layer has a higher density of V-defects than in a second lateral region.
    Type: Application
    Filed: September 24, 2013
    Publication date: September 3, 2015
    Inventors: Christian Leirer, Tobias Meyer, Matthias Peter, Juergen Off, Joachim Hertkorn, Andreas Loeffler, Alexander Walter, Dario Schiavon
  • Publication number: 20150194570
    Abstract: A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Inventors: Matthias Peter, Tobias Meyer, Alexander Walter, Tetsuya Taki, Juergen Off, Rainer Butendeich, Joachim Hertkorm
  • Patent number: 9012885
    Abstract: A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: April 21, 2015
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Matthias Peter, Tobias Meyer, Alexander Walter, Tetsuya Taki, Juergen Off, Rainer Butendeich, Joachim Hertkorn
  • Patent number: 8581236
    Abstract: An electrically pumped optoelectronic semiconductor chip includes at least two radiation-active quantum wells comprising InGaN or consisting thereof. The optoelectronic semiconductor chip includes at least two cover layers which include AlGaN or consist thereof. Each of the cover layers is assigned to precisely one of the radiation-active quantum wells. The cover layers are each located on a p-side of the associated radiation-active quantum well. The distance between the radiation-active quantum well and the associated cover layer is at most 1.5 nm.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 12, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Matthias Peter, Tobias Meyer, Jürgen Off, Tetsuya Taki, Joachim Hertkorn, Matthias Sabathil, Ansgar Laubsch, Andreas Biebersdorf
  • Publication number: 20130264598
    Abstract: A method can be used for producing a semiconductor layer sequence, which is based on a nitride compound semiconductor material and which comprises a microstructured outer surface. The method has the following steps: A) growing at least one first semiconductor layer of the semiconductor layer sequence on a substrate; B) applying an etch-resistant layer on the first semiconductor layer; C) growing at least one further semiconductor layer on the layer sequence obtained in step B); D) separating the semiconductor layer sequence from the substrate, a separating zone of the semiconductor layer sequence being at least partly removed; E) etching the obtained separating surface of the semiconductor layer sequence by an etching means such that a microstructuring of the first semiconductor layer is carried out and the microstructured outer surface is formed.
    Type: Application
    Filed: September 30, 2011
    Publication date: October 10, 2013
    Applicant: OSRAM OPTP SEMICONDUCTORS GMBH
    Inventors: Joachim Hertkorn, Tetsuya Taki, Jürgen Off
  • Publication number: 20120298964
    Abstract: A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
    Type: Application
    Filed: December 27, 2010
    Publication date: November 29, 2012
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Matthias Peter, Tobias Meyer, Alexander Walter, Tetsuya Taki, Juergen Off, Rainer Butendeich, Joachim Hertkorn