Patents by Inventor James D. Beasom

James D. Beasom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9111955
    Abstract: An improved base for a NPN bipolar transistor. The base region is formed with Boron and Indium dopants for improved beta early voltage product and reduced base resistance.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: August 18, 2015
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: 8338914
    Abstract: The formation of devices in semiconductor material is provided using an HF/HCL cleaning process. In one embodiment, the method includes forming at least one hard mask overlaying at least one layer of resistive material, forming at least one opening to a working surface of a silicon substrate of the semiconductor device, and cleaning the semiconductor device with a diluted HF/HCL process. The HF/HCL process includes applying a dilute of HF for a select amount of time and applying a dilute of HCL for a specific amount of time. After cleaning with the diluted HF/HCL process, a silicide contact junction is formed in the at least one opening to the working surface of the silicon substrate, and interconnect metal layers are formed.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: December 25, 2012
    Assignee: Intersil Americas Inc.
    Inventors: John T. Gasner, John Stanton, Dustin A. Woodbury, James D. Beasom
  • Publication number: 20100129975
    Abstract: An improved base for a NPN bipolar transistor. The base region is formed with Boron and Indium dopants for improved beta early voltage product and reduced base resistance.
    Type: Application
    Filed: February 1, 2010
    Publication date: May 27, 2010
    Applicant: INTERSIL AMERICAS INC.
    Inventor: James D. Beasom
  • Publication number: 20100117198
    Abstract: The formation of devices in semiconductor material is provided using an HF/HCL cleaning process. In one embodiment, the method includes forming at least one hard mask overlaying at least one layer of resistive material, forming at least one opening to a working surface of a silicon substrate of the semiconductor device, and cleaning the semiconductor device with a diluted HF/HCL process. The HF/HCL process includes applying a dilute of HF for a select amount of time and applying a dilute of HCL for a specific amount of time. After cleaning with the diluted HF/HCL process, a silicide contact junction is formed in the at least one opening to the working surface of the silicon substrate, and interconnect metal layers are formed.
    Type: Application
    Filed: January 19, 2010
    Publication date: May 13, 2010
    Applicant: INTERSIL AMERICAS INC.
    Inventors: John T. Gasner, John Stanton, Dustin A. Woodbury, James D. Beasom
  • Patent number: 7687336
    Abstract: A method of forming a MOSFET is provided. The method comprises forming a relatively thin layer of dielectric on a substrate. Depositing a gate material layer on the relatively thin layer of dielectric. Removing portions of the gate material layer to form a first and second gate material regions of predetermined lateral lengths. Introducing a first conductivity type dopant in the substrate to form a top gate using first edges of the first and second gate material regions as masks, Introducing a second conductivity dopant of high dopant density in the substrate to form a drain region adjacent the surface of the substrate using a second edge of the second gate material region as a mask to form a first edge of the drain region, wherein a spaced distance between the top gate and the drain region is determined by the lateral length of the second gate material region.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: March 30, 2010
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: 7662692
    Abstract: The formation of devices in semiconductor material is provided using an HF/HCL cleaning process. In one embodiment, the method includes forming at least one hard mask overlaying at least one layer of resistive material. Forming at least one opening to a working surface of a silicon substrate of the semiconductor device. Cleaning the semiconductor device with a diluted HF/HCL process. The HF/HCL process including, applying a dilute of HF for a select amount of time and applying a dilute of HCL for a specific amount of time. After cleaning with the diluted HF/HCL process, forming a silicide contact junction in the at least one of the opening to the working surface of the silicon substrate and forming interconnect metal layers.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: February 16, 2010
    Assignee: Intersil Americas Inc.
    Inventors: John T. Gasner, John Stanton, Dustin A. Woodbury, James D. Beasom
  • Patent number: 7655515
    Abstract: A high voltage lateral semiconductor device for integrated circuits with improved breakdown voltage. The semiconductor device comprising a semiconductor body, an extended drain region formed in the semiconductor body, source and drain pockets, a top gate forming a pn junction with the extended drain region, an insulating layer on a surface of the semiconductor body and a gate formed on the insulating layer. In addition, a higher-doped pocket of semiconductor material is formed within the top gate region that has a higher integrated doping than the rest of the top gate region. This higher-doped pocket of semiconductor material does not totally deplete during device operation. Moreover, the gate controls, by field-effect, a flow of current through a channel formed laterally between the source pocket and a nearest point of the extended drain region.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: February 2, 2010
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: 7605052
    Abstract: A method for forming a diffused, doped backside layer on a device wafer oxide bonded to a handle wafer in an integrated circuit is provided. The method comprises forming a thermal bond oxide layer on a backside surface of the device wafer of the integrated circuit. Implanting the bond oxide with a diffusing dopant. Diffusing dopant from the bond oxide into the backside surface of the device wafer. Depositing an oxide layer on the bond oxide and bonding the deposited oxide layer to the handle wafer of the integrated circuit.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: October 20, 2009
    Assignee: Intersil Corporation
    Inventors: Joseph A. Czagas, Dustin A. Woodbury, James D. Beasom
  • Patent number: 7605445
    Abstract: The present invention relates to an integrated circuit. The integrated circuit includes a substrate, at least one device region formed in the substrate, a patterned layer of oxide, a first and second layer of nitride and at least one metal contact region. The patterned layer of oxide is formed over a surface of the substrate, wherein the patterned layer provides at least one opening to the surface of the substrate adjacent the at least one device region. The first layer of nitride is formed over the patterned oxide layer. The second nitride layer is formed along sidewalls to the at least one opening. The patterned oxide layer is sealed with the first and second nitride layers. The at least one metal contact region is formed in the at least one opening.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: October 20, 2009
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: 7564117
    Abstract: Methods of forming and structures of a relatively large bipolar transistor is provided. The method includes forming a collector in a semiconductor region. Forming a base contiguous with a portion of the collector. Forming a plurality of emitters contiguous with portions of the base. Forming a common emitter interconnect and forming ballast emitter resistors for select emitters. Each ballast emitter resistor is coupled between an associated emitter and the common emitter interconnect. Each ballast resistor is further formed to have a selected resistance value. The selected resistance value of each ballast resistor is selected so the values of the ballast resistors vary in a two dimensional direction in relation to a working surface of the bipolar transistor.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: July 21, 2009
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: 7410860
    Abstract: Apparatus and Methods for the self-alignment of separated regions in a lateral MOSFET of an integrate circuit. In one embodiment, a method comprising, forming a relatively thin dielectric layer on a surface of a substrate. Forming a first region of relatively thick material having a predetermined lateral length on the surface of the substrate adjacent the relatively thin dielectric layer. Implanting dopants to form a top gate using a first edge of the first region as a mask to define a first edge of the top gate. Implanting dopants to form a drain contact using a second edge of the first region as a mask to define a first edge of the drain contact, wherein the distance between the top gate and drain contact is defined by the lateral length of the first region.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: August 12, 2008
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Publication number: 20080176372
    Abstract: A method of forming a MOSFET is provided. The method comprises forming a relatively thin layer of dielectric on a substrate. Depositing a gate material layer on the relatively thin layer of dielectric. Removing portions of the gate material layer to form a first and second gate material regions of predetermined lateral lengths. Introducing a first conductivity type dopant in the substrate to form a top gate using first edges of the first and second gate material regions as masks, Introducing a second conductivity dopant of high dopant density in the substrate to form a drain region adjacent the surface of the substrate using a second edge of the second gate material region as a mask to form a first edge of the drain region, wherein a spaced distance between the top gate and the drain region is determined by the lateral length of the second gate material region.
    Type: Application
    Filed: March 28, 2008
    Publication date: July 24, 2008
    Applicant: INTERSIL AMERICAS INC.
    Inventor: James D. Beasom
  • Patent number: 7341958
    Abstract: The formation of devices in semiconductor material. In one embodiment, a method of forming a semiconductor device is provided. The method comprises forming at least one hard mask overlaying at least one layer of resistive material. Forming at least one opening to a working surface of a silicon substrate of the semiconductor device. Cleaning the semiconductor device with a diluted HF/HCL process. After cleaning with the diluted HF/HCL process, forming a silicide contact junction in the at least one of the opening to the working surface of the silicon substrate and then forming interconnect metal layers.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: March 11, 2008
    Assignee: Intersil Americas Inc.
    Inventors: John T. Gasner, John Stanton, Dustin A. Woodbury, James D. Beasom
  • Patent number: RE41477
    Abstract: An N type buried layer is formed, in one embodiment, by a non selective implant on the surface of a wafer and later diffusion. Subsequently, the wafer is masked and a selective P type buried layer is formed by implant and diffusion. The coefficient of diffusion of the P type buried layer dopant is greater than the N type buried layer dopant so that connections can be made to the P type buried layer by P wells which have a lower dopant concentration than the N buried layer.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: August 10, 2010
    Inventor: James D. Beasom
  • Patent number: RE43042
    Abstract: In accordance with the invention, there are various methods of making an integrated circuit comprising a bipolar transistor. According to an embodiment of the invention, the bipolar transistor can comprise a substrate, a collector comprising a plurality of alternating doped regions, wherein the plurality of alternating doped regions alternate in a lateral direction from a net first conductivity to a net second conductivity, and a collector contact in electrical contact with the collector. The bipolar transistor can also comprise a heavily doped buried layer below the collector, a base in electrical contact with a base contact, wherein the base is doped to a net second conductivity type and wherein the base spans a portion of the plurality of alternating doped regions, and an emitter disposed within the base, the emitter doped to a net first conductivity, wherein a portion of the alternating doped region under the emitter is doped to a concentration of less than about 3×1012 cm?2.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: December 27, 2011
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: RE44140
    Abstract: In accordance with the invention, there are various methods of making an integrated circuit comprising a bipolar transistor. According to an embodiment of the invention, the bipolar transistor can comprise a substrate, a collector comprising a plurality of alternating doped regions, wherein the plurality of alternating doped regions alternate in a lateral direction from a net first conductivity to a net second conductivity, and a collector contact in electrical contact with the collector. The bipolar transistor can also comprise a heavily doped buried layer below the collector, a base in electrical contact with a base contact, wherein the base is doped to a net second conductivity type and wherein the base spans a portion of the plurality of alternating doped regions, and an emitter disposed within the base, the emitter doped to a net first conductivity, wherein a portion of the alternating doped region under the emitter is doped to a concentration of less than about 3×1012 cm?2.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: April 9, 2013
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: RE44430
    Abstract: In accordance with an embodiment of the invention, there is an integrated circuit device having a complementary integrated circuit structure comprising a first MOS device. The first MOS device comprises a source doped to a first conductivity type, a drain extension doped to the first conductivity type separated from the source by a gate, and an extension region doped to a second conductivity type underlying at least a portion of the drain extension adjacent to the gate. The integrated circuit structure also comprises a second complementary MOS device comprising a dual drain extension structure.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: August 13, 2013
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: RE44720
    Abstract: A method of forming a MOSFET is provided. The method comprises forming a relatively thin layer of dielectric on a substrate. Depositing a gate material layer on the relatively thin layer of dielectric. Removing portions of the gate material layer to form a first and second gate material regions of predetermined lateral lengths. Introducing a first conductivity type dopant in the substrate to form a top gate using first edges of the first and second gate material regions as masks, Introducing a second conductivity dopant of high dopant density in the substrate to form a drain region adjacent the surface of the substrate using a second edge of the second gate material region as a mask to form a first edge of the drain region, wherein a spaced distance between the top gate and the drain region is determined by the lateral length of the second gate material region.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: January 21, 2014
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: RE44730
    Abstract: A method of forming a MOSFET is provided. The method comprises forming a relatively thin layer of dielectric on a substrate. Depositing a gate material layer on the relatively thin layer of dielectric. Removing portions of the gate material layer to form a first and second gate material regions of predetermined lateral lengths. Introducing a first conductivity type dopant in the substrate to form a top gate using first edges of the first and second gate material regions as masks, Introducing a second conductivity dopant of high dopant density in the substrate to form a drain region adjacent the surface of the substrate using a second edge of the second gate material region as a mask to form a first edge of the drain region, wherein a spaced distance between the top gate and the drain region is determined by the lateral length of the second gate material region.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: January 28, 2014
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: RE45814
    Abstract: In accordance with an embodiment of the invention, there is an integrated circuit device having a complementary integrated circuit structure comprising a first MOS device. The first MOS device comprises a source doped to a first conductivity type, a drain extension doped to the first conductivity type separated from the source by a gate, and an extension region doped to a second conductivity type underlying at least a portion of the drain extension adjacent to the gate. The integrated circuit structure also comprises a second complementary MOS device comprising a dual drain extension structure.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: November 24, 2015
    Assignee: Intersil Americas LLC
    Inventor: James D. Beasom