Patents by Inventor James M. Derderian

James M. Derderian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240284590
    Abstract: Aspects of the present disclosure configure a processor to detect faults in a printed circuit board (PCB) solder mask using an optical waveguide. The processor directs an optical beam to an input of one or more optical waveguides embedded in a protective coating layer of a PCB, the protective coating layer being adjacent to one or more traces of the PCB. The processor measures a beam characteristic of the optical beam that is output by the one or more optical waveguides. The processor detects a disruption of the optical beam that is output by the one or more optical waveguides based on the beam characteristic. The processor detects a fault in the protective coating layer of the PCB based on detecting the disruption of the optical beam that is output by the one or more optical waveguides.
    Type: Application
    Filed: February 8, 2024
    Publication date: August 22, 2024
    Inventors: Chan H. Yoo, James M. Derderian, Walter L. Moden, Christopher Glancey
  • Patent number: 11967576
    Abstract: Methods of reflowing electrically conductive elements on a wafer may involve directing a laser beam toward a region of a surface of a wafer supported on a film of a film frame to reflow at least one electrically conductive element on the surface of the wafer. In some embodiments, the wafer may be detached from a carrier substrate and be secured to the film frame before laser reflow. Apparatus for performing the methods, and methods of repairing previously reflowed conductive elements on a wafer are also disclosed.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: April 23, 2024
    Assignee: Micron Technology, Inc.
    Inventor: James M. Derderian
  • Publication number: 20230395463
    Abstract: Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.
    Type: Application
    Filed: August 23, 2023
    Publication date: December 7, 2023
    Inventors: Sameer S. Vadhavkar, Xiao Li, Steven K. Groothuis, Jian Li, Jaspreet S. Gandhi, James M. Derderian, David R. Hembree
  • Patent number: 11776877
    Abstract: Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: October 3, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Sameer S. Vadhavkar, Xiao Li, Steven K. Groothuis, Jian Li, Jaspreet S. Gandhi, James M. Derderian, David R. Hembree
  • Publication number: 20220013434
    Abstract: Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.
    Type: Application
    Filed: June 1, 2021
    Publication date: January 13, 2022
    Inventors: Sameer S. Vadhavkar, Xiao Li, Steven K. Groothuis, Jian Li, Jaspreet S. Gandhi, James M. Derderian, David R. Hembree
  • Publication number: 20210335741
    Abstract: Methods of reflowing electrically conductive elements on a wafer may involve directing a laser beam toward a region of a surface of a wafer supported on a film of a film frame to reflow at least one electrically conductive element on the surface of the wafer. In some embodiments, the wafer may be detached from a carrier substrate and be secured to the film frame before laser reflow. Apparatus for performing the methods, and methods of repairing previously reflowed conductive elements on a wafer are also disclosed.
    Type: Application
    Filed: July 8, 2021
    Publication date: October 28, 2021
    Inventor: James M. Derderian
  • Patent number: 11139258
    Abstract: Apparatuses and methods for providing thermal pathways from a substrate to a thermal bonding pad. The thermal pathways may be metal extensions of the thermal bonding pad that are disposed in channels formed in a backside passivation layer underneath the thermal bonding pad, and may be in direct contact with an underlying substrate. The thermal pathways may provide improved thermal dissipation from the substrate.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: October 5, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Jaspreet S. Gandhi, James M. Derderian, Sameer S. Vadhavkar, Jian Li
  • Patent number: 11081458
    Abstract: Methods of reflowing electrically conductive elements on a wafer may involve directing a laser beam toward a region of a surface of a wafer supported on a film of a film frame to reflow at least one electrically conductive element on the surface of the wafer. In some embodiments, the wafer may be detached from a carrier substrate and be secured to the film frame before laser reflow. Apparatus for performing the methods, and methods of repairing previously reflowed conductive elements on a wafer are also disclosed.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: August 3, 2021
    Assignee: Micron Technology, Inc.
    Inventor: James M. Derderian
  • Patent number: 10861765
    Abstract: A semiconductor device assembly having a semiconductor device attached to a substrate with a foil layer on a surface of the substrate. A layer of adhesive connects the substrate to a first surface of the semiconductor device. The semiconductor device assembly enables processing on the second surface of the semiconductor device. An energy pulse may be applied to the foil layer causing an exothermic reaction to the foil layer that releases the substrate from the semiconductor device. The semiconductor device assembly may include a release layer positioned between the foil layer and the layer of adhesive that connects the substrate to the semiconductor device. The heat generated by the exothermic reaction breaks down the release layer to release the substrate from the semiconductor device. The energy pulse may be an electric charge, a heat pulse, or may be applied from a laser.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: December 8, 2020
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: James M. Derderian, Andrew M. Bayless, Xiao Li
  • Patent number: 10748878
    Abstract: Semiconductor device assemblies with heat transfer structures formed from semiconductor materials are disclosed herein. In one embodiment, a semiconductor device assembly can include a thermal transfer structure formed from a semiconductor substrate. The thermal transfer structure includes an inner region, an outer region projecting from the inner region, and a cavity defined in the outer region by the inner and outer regions. The semiconductor device assembly further includes a stack of first semiconductor dies in the cavity, and a second semiconductor die attached to the outer region of the thermal transfer structure and enclosing the stack of first semiconductor dies within the cavity.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: August 18, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Sameer S. Vadhavkar, Jaspreet S. Gandhi, James M. Derderian
  • Publication number: 20200176404
    Abstract: Apparatuses and methods for providing thermal pathways from a substrate to a thermal bonding pad. The thermal pathways may be metal extensions of the thermal bonding pad that are disposed in channels formed in a backside passivation layer underneath the thermal bonding pad, and may be in direct contact with an underlying substrate. The thermal pathways may provide improved thermal dissipation from the substrate.
    Type: Application
    Filed: February 5, 2020
    Publication date: June 4, 2020
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: JASPREET S. GANDHI, JAMES M. DERDERIAN, SAMEER S. VADHAVKAR, JIAN LI
  • Patent number: 10580746
    Abstract: Apparatuses and methods for providing thermal pathways from a substrate to a thermal bonding pad. The thermal pathways may be metal extensions of the thermal bonding pad that are disposed in channels formed in a backside passivation layer underneath the thermal bonding pad, and may be in direct contact with an underlying substrate. The thermal pathways may provide improved thermal dissipation from the substrate.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: March 3, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Jaspreet S. Gandhi, James M. Derderian, Sameer S. Vadhavkar, Jian Li
  • Patent number: 10573612
    Abstract: Apparatuses and methods for providing thermal pathways from a substrate to a thermal bonding pad. The thermal pathways may be metal extensions of the thermal bonding pad that are disposed in channels formed in a backside passivation layer underneath the thermal bonding pad, and may be in direct contact with an underlying substrate. The thermal pathways may provide improved thermal dissipation from the substrate.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: February 25, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Jaspreet S. Gandhi, James M. Derderian, Sameer S. Vadhavkar, Jian Li
  • Patent number: 10559495
    Abstract: A method for processing semiconductor dice comprises removing material from a surface of a semiconductor wafer to create a pocket surrounded by a sidewall at a lateral periphery of the semiconductor wafer, forming a film on a bottom of the pocket and securing semiconductor dice to the film in mutually spaced locations. A dielectric molding material is placed in the pocket over and between the semiconductor dice, material is removed from another surface of the semiconductor wafer to expose the film, bond pads of the semiconductor dice are exposed, redistribution layers in electrical communication with the bond pads of associated semiconductor dice are formed, and the redistribution layers and associated semiconductor dice are singulated along spaces between the semiconductor dice.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: February 11, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Andrew M. Bayless, James M. Derderian, Xiao Li
  • Patent number: 10559551
    Abstract: Semiconductor device assemblies with heat transfer structures formed from semiconductor materials are disclosed herein. In one embodiment, a semiconductor device assembly can include a thermal transfer structure formed from a semiconductor substrate. The thermal transfer structure includes an inner region, an outer region projecting from the inner region, and a cavity defined in the outer region by the inner and outer regions. The semiconductor device assembly further includes a stack of first semiconductor dies in the cavity, and a second semiconductor die attached to the outer region of the thermal transfer structure and enclosing the stack of first semiconductor dies within the cavity.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: February 11, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Sameer S. Vadhavkar, Jaspreet S. Gandhi, James M. Derderian
  • Patent number: 10481200
    Abstract: Apparatus for testing semiconductor devices comprising die stacks, the apparatus comprising a substrate having an array of pockets in a surface thereof arranged to correspond to conductive elements protruding from a semiconductor device to be tested. The pockets include conductive contacts with traces extending to conductive pads, which may be configured as test pads, jumper pads, edge connects or contact pads. The substrate may comprise a semiconductor wafer or wafer segment and, if the latter, multiple segments may be received in recesses in a fixture. Testing may be effected using a probe card, a bond head carrying conductive pins, or through conductors carried by the fixture.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: November 19, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Jaspreet S. Gandhi, Michel Koopmans, James M. Derderian
  • Publication number: 20190348401
    Abstract: Semiconductor device assemblies with heat transfer structures formed from semiconductor materials are disclosed herein. In one embodiment, a semiconductor device assembly can include a thermal transfer structure formed from a semiconductor substrate. The thermal transfer structure includes an inner region, an outer region projecting from the inner region, and a cavity defined in the outer region by the inner and outer regions. The semiconductor device assembly further includes a stack of first semiconductor dies in the cavity, and a second semiconductor die attached to the outer region of the thermal transfer structure and enclosing the stack of first semiconductor dies within the cavity.
    Type: Application
    Filed: July 26, 2019
    Publication date: November 14, 2019
    Inventors: Sameer S. Vadhavkar, Jaspreet S. Gandhi, James M. Derderian
  • Publication number: 20190341325
    Abstract: A semiconductor device assembly having a semiconductor device attached to a substrate with a foil layer on a surface of the substrate. A layer of adhesive connects the substrate to a first surface of the semiconductor device. The semiconductor device assembly enables processing on the second surface of the semiconductor device. An energy pulse may be applied to the foil layer causing an exothermic reaction to the foil layer that releases the substrate from the semiconductor device. The semiconductor device assembly may include a release layer positioned between the foil layer and the layer of adhesive that connects the substrate to the semiconductor device. The heat generated by the exothermic reaction breaks down the release layer to release the substrate from the semiconductor device. The energy pulse may be an electric charge, a heat pulse, or may be applied from a laser.
    Type: Application
    Filed: June 5, 2019
    Publication date: November 7, 2019
    Inventors: James M. Derderian, Andrew M. Bayless, Xiao Li
  • Patent number: 10431519
    Abstract: A semiconductor device assembly having a semiconductor device attached to a substrate with a foil layer on a surface of the substrate. A layer of adhesive connects the substrate to a first surface of the semiconductor device. The semiconductor device assembly enables processing on the second surface of the semiconductor device. An energy pulse may be applied to the foil layer causing an exothermic reaction to the foil layer that releases the substrate from the semiconductor device. The semiconductor device assembly may include a release layer positioned between the foil layer and the layer of adhesive that connects the substrate to the semiconductor device. The heat generated by the exothermic reaction breaks down the release layer to release the substrate from the semiconductor device. The energy pulse may be an electric charge, a heat pulse, or may be applied from a laser.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: October 1, 2019
    Assignee: Micron Technology, Inc.
    Inventors: James M. Derderian, Andrew M. Bayless, Xiao Li
  • Publication number: 20190252337
    Abstract: Methods of reflowing electrically conductive elements on a wafer may involve directing a laser beam toward a region of a surface of a wafer supported on a film of a film frame to reflow at least one electrically conductive element on the surface of the wafer. In some embodiments, the wafer may be detached from a carrier substrate and be secured to the film frame before laser reflow. Apparatus for performing the methods, and methods of repairing previously reflowed conductive elements on a wafer are also disclosed.
    Type: Application
    Filed: February 15, 2018
    Publication date: August 15, 2019
    Inventor: James M. Derderian