Patents by Inventor Jan Visser

Jan Visser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10636825
    Abstract: Embodiments described herein generally relate to an apparatus for capturing an image and a photoactive device for that apparatus. In one embodiment, the apparatus for capturing an image includes a lens and a photoactive device. The photoactive device is positioned behind the lens. The photoactive device includes a substrate, one or more photodiodes, and a color filter array. The one or more photodiodes are formed in the substrate. The color filter array is positioned over the substrate. The color filter array has one or more color filters. Each color filter has a radiation receiving surface that is shaped to re-direct radiation to a respective photodiode.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Joseph R. Johnson, Robert Jan Visser, Wayne McMillan, Rutger Meyer Timmerman Thijssen
  • Patent number: 10580826
    Abstract: An apparatus for positioning micro-devices on a destination substrate includes a first support to hold a destination substrate, a second support to provide or hold a transfer body having a surface to receive an adhesive layer, a light source to generate a light beam, a mirror configured to adjustably position the light beam on the adhesive layer on the transfer body, and a controller. The controller is configured to cause the light source to generate the light beam and adjust the mirror to position the light beam on the adhesive layer so as to selectively expose one or more portions of the adhesive layer to create one or more neutralized portions. The transfer body and the destination substrate are moved away from each other and one or more micro-devices corresponding to the one or more neutralized portions of the adhesive layer remain on the destination substrate.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: March 3, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Manivannan Thothadri, Robert Jan Visser
  • Patent number: 10573527
    Abstract: Systems and methods of etching a semiconductor substrate may include flowing an oxygen-containing precursor into a substrate processing region of a semiconductor processing chamber. The substrate processing region may house the semiconductor substrate, and the semiconductor substrate may include an exposed metal-containing material. The methods may include flowing ammonia into the substrate processing region at a temperature above about 200° C. The methods may further include removing an amount of the metal-containing material.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: February 25, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Geetika Bajaj, Robert Jan Visser, Nitin Ingle, Zihui Li, Prerna Sonthalia Goradia
  • Patent number: 10559730
    Abstract: The present disclosure generally relates to light field displays and methods of displaying images with light field arrays. In one example, the present disclosure relates to pixel arrangements for use in light field displays. Each pixel includes a plurality of LEDs, such as micro LEDs, positioned adjacent respective micro-lenses of each pixel.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: February 11, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Manivannan Thothadri, Christopher Dennis Bencher, Robert Jan Visser, John M. White
  • Patent number: 10502983
    Abstract: Embodiments described herein relate to display devices, e.g., virtual and augmented reality displays and applications. In one embodiment, a planar substrate has stepwise features formed thereon and emitter structures formed on each of the features. An encapsulating layer is disposed on the substrate and a plurality of uniform dielectric nanostructures are formed on the encapsulating layer. Virtual images generated by the apparatus disclosed herein provide for improved image clarity by reducing chromatic aberrations at an image plane.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: December 10, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Robert Jan Visser, Avishek Ghosh
  • Publication number: 20190369321
    Abstract: Embodiments described herein relate to methods of fabricating waveguide structures with gratings having front angles less than about 45° and back angles less than about 45°. The methods include imprinting stamps into nanoimprint resists disposed on substrates. The nanoimprint resists are subjected to a cure process. The stamps are released from the nanoimprint resist at a release angle ? using a release method. The nanoimprint resists are subjected to an anneal process to form a waveguide structure comprising a plurality of gratings with a front angle ? and a back angle ? relative to a second plane of the surface of the substrate less than about 45°.
    Type: Application
    Filed: November 14, 2018
    Publication date: December 5, 2019
    Inventors: Michael Yu-tak YOUNG, Ludovic GODET, Robert Jan VISSER, Wayne MCMILLAN
  • Patent number: 10497573
    Abstract: Precursors, such as interhalogens and/or compounds formed of noble gases and halogens, may be supplied in a gaseous form to a semiconductor processing chamber at a predetermined amount, flow rate, pressure, and/or temperature in a cyclic manner such that atomic layer etching of select semiconductor materials may be achieved in each cycle. In the etching process, the element of the precursor that has a relatively higher electronegativity may react with select semiconductor materials to form volatile etching byproducts. The element of the precursor that has a relatively lower electronegativity may form a gas that may be recycled to re-form an precursor with one or more halogen-containing materials using a plasma process.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: December 3, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Prerna Sonthalia Goradia, Fei Wang, Geetika Bajaj, Nitin Ingle, Zihui Li, Robert Jan Visser, Nitin Deepak
  • Patent number: 10490599
    Abstract: Embodiments described herein provide for light field displays and methods of forming light field displays where micro-LED arrays are each configured to provide at least a macro-pixel of effective native hardware resolution, where each macro-pixel provides single pixel of spatial resolution and plurality of pixels of angular resolution, and where each pixel of angular resolution includes a plurality of sub-pixels each provided by a directional collimating micro-LED device described herein.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: November 26, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Manivannan Thothadri, Christopher Dennis Bencher, Robert Jan Visser, John M. White
  • Publication number: 20190346591
    Abstract: Implementations described herein generally relate to flexible display devices and cover lens assemblies with flexible cover lens. In one or more embodiments, a cover lens assembly is provided and includes a first flexible cover lens, a second flexible cover lens, and a sacrificial adhesion disposed between the first flexible cover lens and the second flexible cover lens. The first flexible cover lens includes a first hard coat layer having a hardness in a range from about 4 H to about 9 H and a first substrate. The second flexible cover lens includes a second hard coat layer having a hardness in a range from about 2 H to about 9 H. The first substrate is disposed between the first hard coat layer and the sacrificial adhesion layer.
    Type: Application
    Filed: May 8, 2019
    Publication date: November 14, 2019
    Inventors: Manivannan THOTHADRI, Ali SALEHPOUR, John D. BUSCH, Robert Jan VISSER
  • Publication number: 20190333776
    Abstract: Exemplary methods for selective etching of semiconductor materials may include flowing a fluorine-containing precursor into a processing region of a semiconductor processing chamber. The methods may also include flowing a silicon-containing suppressant into the processing region of the semiconductor processing chamber. The methods may further include contacting a substrate with the fluorine-containing precursor and the silicon-containing suppressant. The substrate may include an exposed region of silicon nitride and an exposed region of silicon oxide. The methods may also include selectively etching the exposed region of silicon nitride to the exposed region of silicon oxide.
    Type: Application
    Filed: April 30, 2019
    Publication date: October 31, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Prerna Sonthalia Goradia, Yogita Pareek, Geetika Bajaj, Robert Jan Visser, Nitin K. Ingle
  • Publication number: 20190324297
    Abstract: Embodiments described herein relate to display devices, e.g., virtual and augmented reality displays and applications. In one embodiment, a planar substrate has stepwise features formed thereon and emitter structures formed on each of the features. An encapsulating layer is disposed on the substrate and a plurality of uniform dielectric nanostructures are formed on the encapsulating layer. Virtual images generated by the apparatus disclosed herein provide for improved image clarity by reducing chromatic aberrations at an image plane.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Robert Jan VISSER, Avishek GHOSH
  • Publication number: 20190317021
    Abstract: An apparatus for determining a characteristic of a photoluminescent (PL) layer comprises: a light source that generates an excitation light that includes light from the visible or near-visible spectrum; an optical assembly configured to direct the excitation light onto a PL layer; a detector that is configured to receive a PL emission generated by the PL layer in response to the excitation light interacting with the PL layer and generate a signal based on the PL emission; and a computing device coupled to the detector and configured to receive the signal from the detector and determine a characteristic of the PL layer based on the signal.
    Type: Application
    Filed: January 25, 2019
    Publication date: October 17, 2019
    Inventors: Avishek GHOSH, Byung-Sung KWAK, Todd EGAN, Robert Jan VISSER
  • Publication number: 20190311909
    Abstract: Systems and methods of etching a semiconductor substrate may include flowing an oxygen-containing precursor into a substrate processing region of a semiconductor processing chamber. The substrate processing region may house the semiconductor substrate, and the semiconductor substrate may include an exposed metal-containing material. The methods may include flowing ammonia into the substrate processing region at a temperature above about 200° C. The methods may further include removing an amount of the metal-containing material.
    Type: Application
    Filed: April 5, 2019
    Publication date: October 10, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Geetika Bajaj, Robert Jan Visser, Nitin Ingle, Zihui Li, Prerna Sonthalia Goradia
  • Publication number: 20190301011
    Abstract: Embodiments of the disclosure may provide a method and apparatus for cleaning an epi-chamber at a low temperature so that residues are quickly eliminated from a surface of the epi-chamber after a performing a low temperature epitaxial deposition process. Some of the benefits of the present disclosure include flowing a chlorine containing gas to an improved epi-chamber having UV capability to chlorinate and quickly remove the epitaxial deposition residues at a low cleaning process temperature. As such, residues are decreased or removed from the epi-chamber such that further processing may be performed.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 3, 2019
    Inventors: Geetika BAJAJ, Prerna Sonthalia GORADIA, Robert Jan VISSER, Abhishek DUBE, Flora Fong-Song CHANG, Hua CHUNG
  • Publication number: 20190287808
    Abstract: Precursors, such as interhalogens and/or compounds formed of noble gases and halogens, may be supplied in a gaseous form to a semiconductor processing chamber at a predetermined amount, flow rate, pressure, and/or temperature in a cyclic manner such that atomic layer etching of select semiconductor materials may be achieved in each cycle. In the etching process, the element of the precursor that has a relatively higher electronegativity may react with select semiconductor materials to form volatile etching byproducts. The element of the precursor that has a relatively lower electronegativity may form a gas that may be recycled to re-form an precursor with one or more halogen-containing materials using a plasma process.
    Type: Application
    Filed: March 13, 2018
    Publication date: September 19, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Prerna Sonthalia Goradia, Fei Wang, Geetika Bajaj, Nitin Ingle, Zihui Li, Robert Jan Visser, Nitin Deepak
  • Publication number: 20190278005
    Abstract: Embodiments herein describe a sub-micron 3D diffractive optics element and a method for forming the sub-micron 3D diffractive optics element. In a first embodiment, a method is provided for forming a sub-micron 3D diffractive optics element on a substrate without planarization. The method includes depositing a material stack to be patterned on a substrate, depositing and patterning a thick mask material on a portion of the material stack, etching the material stack down one level, trimming a side portion of the thick mask material, etching the material stack down one more level, repeating trim and etch steps above ‘n’ times, and stripping the thick mask material from the material stack.
    Type: Application
    Filed: March 5, 2019
    Publication date: September 12, 2019
    Inventors: Michael Yu-tak YOUNG, Ludovic GODET, Robert Jan VISSER, Naamah ARGAMAN, Christopher Dennis BENCHER, Wayne MCMILLAN
  • Patent number: 10409001
    Abstract: Embodiments described herein relate to apparatus and methods for display structure fabrication. In one embodiment, a waveguide structure having an input grating structure and an output grating structure is fabricated and a spacer material is deposited on the waveguide. The spacer material is etched from various portions of the waveguide structure and a high refractive index material is deposited on the waveguide. Portions of the spacer material remaining on the waveguide structure are removed leaving the high refractive index material disposed on desired surfaces of the waveguide structure.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: September 10, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael Yu-tak Young, Wayne McMillan, Rutger Meyer Timmerman Thijssen, Robert Jan Visser
  • Publication number: 20190237325
    Abstract: Embodiments described herein relate to methods for forming patterns of semiconductor devices utilizing parylene gapfill layers deposited using a thermal chemical vapor deposition (CVD) process. In one embodiment the patterns of semiconductor devices are formed by forming amorphous carbon (a-C) mandrels on first layers, depositing amorphous silicon (a-Si) layers over the a-C mandrels and the first layers, etching the a-Si spacer layers to expose top surfaces of the a-C mandrels and to expose the first layers, depositing parylene gapfill layers using the CVD process, removing portions of the parylene gapfill layers until the top surfaces are exposed; and removing the a-Si spacer layers to expose the first layers and form patterns of semiconductor devices having a-C mandrels and parylene mandrels.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 1, 2019
    Inventors: Fei WANG, Miaojun WANG, Shishi JIANG, Pramit MANNA, Abhijit Basu MALLICK, Robert Jan VISSER
  • Publication number: 20190229246
    Abstract: The present disclosure generally relates to light field displays and methods of displaying images with light field arrays. In one example, the present disclosure relates to pixel arrangements for use in light field displays. Each pixel includes a plurality of LEDs, such as micro LEDs, positioned adjacent respective micro-lenses of each pixel.
    Type: Application
    Filed: March 29, 2019
    Publication date: July 25, 2019
    Inventors: Christopher Dennis BENCHER, Manivannan THOTHADRI, Robert Jan VISSER
  • Publication number: 20190221422
    Abstract: Methods of selectively depositing a mask layer on a surface of a patterned substrate and self-aligned patterned masks are provided herein. In one embodiment, a method of selectivity depositing a mask layer includes positioning the patterned substrate on a substrate support in a processing volume of a processing chamber, exposing the surface of the patterned substrate to a parylene monomer gas, forming a first layer on the patterned substrate, wherein the first layer comprises a patterned parylene layer, and depositing a second layer on the first layer. In another embodiment, a self-aligned patterned mask comprises a parylene layer comprising a plurality of parylene features and a plurality of openings, the parylene layer is disposed on a patterned substrate comprising a dielectric layer and a plurality of metal features, the plurality of metal feature comprise a parylene deposition inhibitor metal, and the plurality of parylene features are selectivity formed on dielectric surfaces of the dielectric layer.
    Type: Application
    Filed: January 14, 2019
    Publication date: July 18, 2019
    Inventors: Fei WANG, Miaojun WANG, Pramit MANNA, Shishi JIANG, Abhijit Basu MALLICK, Robert Jan VISSER